Romanian Numerical Personal Codes¶
Introduction¶
The function clean_ro_cnp()
cleans a column containing Romanian Numerical Personal Code (CNP) strings, and standardizes them in a given format. The function validate_ro_cnp()
validates either a single CNP strings, a column of CNP strings or a DataFrame of CNP strings, returning True
if the value is valid, and False
otherwise.
CNP strings can be converted to the following formats via the output_format
parameter:
compact
: only number strings without any seperators or whitespace, like “1630615123457”standard
: CNP strings with proper whitespace in the proper places. Note that in the case of CNP, the compact format is the same as the standard one.birthdate
: split the date parts from the number and return the birth date, like “1875-03-16”.
Invalid parsing is handled with the errors
parameter:
coerce
(default): invalid parsing will be set to NaNignore
: invalid parsing will return the inputraise
: invalid parsing will raise an exception
The following sections demonstrate the functionality of clean_ro_cnp()
and validate_ro_cnp()
.
An example dataset containing CNP strings¶
[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
{
"cnp": [
"1630615123457",
"0800101221142",
'7542011030',
'7552A10004',
'8019010008',
"hello",
np.nan,
"NULL",
],
"address": [
"123 Pine Ave.",
"main st",
"1234 west main heights 57033",
"apt 1 789 s maple rd manhattan",
"robie house, 789 north main street",
"1111 S Figueroa St, Los Angeles, CA 90015",
"(staples center) 1111 S Figueroa St, Los Angeles",
"hello",
]
}
)
df
[1]:
cnp | address | |
---|---|---|
0 | 1630615123457 | 123 Pine Ave. |
1 | 0800101221142 | main st |
2 | 7542011030 | 1234 west main heights 57033 |
3 | 7552A10004 | apt 1 789 s maple rd manhattan |
4 | 8019010008 | robie house, 789 north main street |
5 | hello | 1111 S Figueroa St, Los Angeles, CA 90015 |
6 | NaN | (staples center) 1111 S Figueroa St, Los Angeles |
7 | NULL | hello |
1. Default clean_ro_cnp
¶
By default, clean_ro_cnp
will clean cnp strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_ro_cnp
clean_ro_cnp(df, column = "cnp")
[2]:
cnp | address | cnp_clean | |
---|---|---|---|
0 | 1630615123457 | 123 Pine Ave. | 1630615123457 |
1 | 0800101221142 | main st | NaN |
2 | 7542011030 | 1234 west main heights 57033 | NaN |
3 | 7552A10004 | apt 1 789 s maple rd manhattan | NaN |
4 | 8019010008 | robie house, 789 north main street | NaN |
5 | hello | 1111 S Figueroa St, Los Angeles, CA 90015 | NaN |
6 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
7 | NULL | hello | NaN |
2. Output formats¶
This section demonstrates the output parameter.
standard
(default)¶
[3]:
clean_ro_cnp(df, column = "cnp", output_format="standard")
[3]:
cnp | address | cnp_clean | |
---|---|---|---|
0 | 1630615123457 | 123 Pine Ave. | 1630615123457 |
1 | 0800101221142 | main st | NaN |
2 | 7542011030 | 1234 west main heights 57033 | NaN |
3 | 7552A10004 | apt 1 789 s maple rd manhattan | NaN |
4 | 8019010008 | robie house, 789 north main street | NaN |
5 | hello | 1111 S Figueroa St, Los Angeles, CA 90015 | NaN |
6 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
7 | NULL | hello | NaN |
compact
¶
[4]:
clean_ro_cnp(df, column = "cnp", output_format="compact")
[4]:
cnp | address | cnp_clean | |
---|---|---|---|
0 | 1630615123457 | 123 Pine Ave. | 1630615123457 |
1 | 0800101221142 | main st | NaN |
2 | 7542011030 | 1234 west main heights 57033 | NaN |
3 | 7552A10004 | apt 1 789 s maple rd manhattan | NaN |
4 | 8019010008 | robie house, 789 north main street | NaN |
5 | hello | 1111 S Figueroa St, Los Angeles, CA 90015 | NaN |
6 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
7 | NULL | hello | NaN |
birthdate
¶
[5]:
clean_ro_cnp(df, column = "cnp", output_format="birthdate")
[5]:
cnp | address | cnp_clean | |
---|---|---|---|
0 | 1630615123457 | 123 Pine Ave. | 1963-06-15 |
1 | 0800101221142 | main st | NaN |
2 | 7542011030 | 1234 west main heights 57033 | NaN |
3 | 7552A10004 | apt 1 789 s maple rd manhattan | NaN |
4 | 8019010008 | robie house, 789 north main street | NaN |
5 | hello | 1111 S Figueroa St, Los Angeles, CA 90015 | NaN |
6 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
7 | NULL | hello | NaN |
3. inplace
parameter¶
This deletes the given column from the returned DataFrame. A new column containing cleaned CNP strings is added with a title in the format "{original title}_clean"
.
[6]:
clean_ro_cnp(df, column="cnp", inplace=True)
[6]:
cnp_clean | address | |
---|---|---|
0 | 1630615123457 | 123 Pine Ave. |
1 | NaN | main st |
2 | NaN | 1234 west main heights 57033 |
3 | NaN | apt 1 789 s maple rd manhattan |
4 | NaN | robie house, 789 north main street |
5 | NaN | 1111 S Figueroa St, Los Angeles, CA 90015 |
6 | NaN | (staples center) 1111 S Figueroa St, Los Angeles |
7 | NaN | hello |
4. errors
parameter¶
coerce
(default)¶
[7]:
clean_ro_cnp(df, "cnp", errors="coerce")
[7]:
cnp | address | cnp_clean | |
---|---|---|---|
0 | 1630615123457 | 123 Pine Ave. | 1630615123457 |
1 | 0800101221142 | main st | NaN |
2 | 7542011030 | 1234 west main heights 57033 | NaN |
3 | 7552A10004 | apt 1 789 s maple rd manhattan | NaN |
4 | 8019010008 | robie house, 789 north main street | NaN |
5 | hello | 1111 S Figueroa St, Los Angeles, CA 90015 | NaN |
6 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
7 | NULL | hello | NaN |
ignore
¶
[8]:
clean_ro_cnp(df, "cnp", errors="ignore")
[8]:
cnp | address | cnp_clean | |
---|---|---|---|
0 | 1630615123457 | 123 Pine Ave. | 1630615123457 |
1 | 0800101221142 | main st | 0800101221142 |
2 | 7542011030 | 1234 west main heights 57033 | 7542011030 |
3 | 7552A10004 | apt 1 789 s maple rd manhattan | 7552A10004 |
4 | 8019010008 | robie house, 789 north main street | 8019010008 |
5 | hello | 1111 S Figueroa St, Los Angeles, CA 90015 | hello |
6 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
7 | NULL | hello | NaN |
4. validate_ro_cnp()
¶
validate_ro_cnp()
returns True
when the input is a valid CNP. Otherwise it returns False
.
The input of validate_ro_cnp()
can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_ro_cnp()
only returns the validation result for the specified column. If user doesn’t specify the column name, validate_ro_cnp()
returns the validation result for the whole DataFrame.
[9]:
from dataprep.clean import validate_ro_cnp
print(validate_ro_cnp('1630615123457'))
print(validate_ro_cnp('0800101221142'))
print(validate_ro_cnp('7542011030'))
print(validate_ro_cnp('7552A10004'))
print(validate_ro_cnp('8019010008'))
print(validate_ro_cnp("hello"))
print(validate_ro_cnp(np.nan))
print(validate_ro_cnp("NULL"))
True
False
False
False
False
False
False
False
Series¶
[10]:
validate_ro_cnp(df["cnp"])
[10]:
0 True
1 False
2 False
3 False
4 False
5 False
6 False
7 False
Name: cnp, dtype: bool
DataFrame + Specify Column¶
[11]:
validate_ro_cnp(df, column="cnp")
[11]:
0 True
1 False
2 False
3 False
4 False
5 False
6 False
7 False
Name: cnp, dtype: bool
Only DataFrame¶
[12]:
validate_ro_cnp(df)
[12]:
cnp | address | |
---|---|---|
0 | True | False |
1 | False | False |
2 | False | False |
3 | False | False |
4 | False | False |
5 | False | False |
6 | False | False |
7 | False | False |
[ ]: