French Company Establishment Identification Numbers

Introduction

The function clean_fr_siret() cleans a column containing French company establishment identification number (SIRET) strings, and standardizes them in a given format. The function validate_fr_siret() validates either a single SIRET strings, a column of SIRET strings or a DataFrame of SIRET strings, returning True if the value is valid, and False otherwise.

SIRET strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “73282932000074”

  • standard: SIRET strings with proper whitespace in the proper places, like “732 829 320 00074”

  • siren: convert the SIRET number to a SIREN number, like “732829320”.

  • tva: convert the SIRET number to a TVA number, like “44732829320”.

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_fr_siret() and validate_fr_siret().

An example dataset containing SIRET strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "siret": [
            "73282932000074",
            "73282932000079",
            "999 999 999",
            "004085616",
            "002 724 334",
            "hello",
            np.nan,
            "NULL",
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "1111 S Figueroa St, Los Angeles, CA 90015",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
siret address
0 73282932000074 123 Pine Ave.
1 73282932000079 main st
2 999 999 999 1234 west main heights 57033
3 004085616 apt 1 789 s maple rd manhattan
4 002 724 334 robie house, 789 north main street
5 hello 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NULL hello

1. Default clean_fr_siret

By default, clean_fr_siret will clean siret strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_fr_siret
clean_fr_siret(df, column = "siret")
[2]:
siret address siret_clean
0 73282932000074 123 Pine Ave. 732 829 320 00074
1 73282932000079 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_fr_siret(df, column = "siret", output_format="standard")
[3]:
siret address siret_clean
0 73282932000074 123 Pine Ave. 732 829 320 00074
1 73282932000079 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

compact

[4]:
clean_fr_siret(df, column = "siret", output_format="compact")
[4]:
siret address siret_clean
0 73282932000074 123 Pine Ave. 73282932000074
1 73282932000079 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

siren

[5]:
clean_fr_siret(df, column = "siret", output_format="siren")
[5]:
siret address siret_clean
0 73282932000074 123 Pine Ave. 732829320
1 73282932000079 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

tva

[6]:
clean_fr_siret(df, column = "siret", output_format="tva")
[6]:
siret address siret_clean
0 73282932000074 123 Pine Ave. 44732829320
1 73282932000079 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned SIRET strings is added with a title in the format "{original title}_clean".

[7]:
clean_fr_siret(df, column="siret", inplace=True)
[7]:
siret_clean address
0 732 829 320 00074 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NaN hello

4. errors parameter

coerce (default)

[8]:
clean_fr_siret(df, "siret", errors="coerce")
[8]:
siret address siret_clean
0 73282932000074 123 Pine Ave. 732 829 320 00074
1 73282932000079 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

ignore

[9]:
clean_fr_siret(df, "siret", errors="ignore")
[9]:
siret address siret_clean
0 73282932000074 123 Pine Ave. 732 829 320 00074
1 73282932000079 main st 73282932000079
2 999 999 999 1234 west main heights 57033 999 999 999
3 004085616 apt 1 789 s maple rd manhattan 004085616
4 002 724 334 robie house, 789 north main street 002 724 334
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 hello
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

4. validate_fr_siret()

validate_fr_siret() returns True when the input is a valid SIRET. Otherwise it returns False.

The input of validate_fr_siret() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_fr_siret() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_fr_siret() returns the validation result for the whole DataFrame.

[10]:
from dataprep.clean import validate_fr_siret
print(validate_fr_siret("73282932000074"))
print(validate_fr_siret("73282932000079"))
print(validate_fr_siret("999 999 999"))
print(validate_fr_siret("51824753556"))
print(validate_fr_siret("004085616"))
print(validate_fr_siret("hello"))
print(validate_fr_siret(np.nan))
print(validate_fr_siret("NULL"))
True
False
False
False
False
False
False
False

Series

[11]:
validate_fr_siret(df["siret"])
[11]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: siret, dtype: bool

DataFrame + Specify Column

[12]:
validate_fr_siret(df, column="siret")
[12]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: siret, dtype: bool

Only DataFrame

[13]:
validate_fr_siret(df)
[13]:
siret address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
7 False False
[ ]: