The function clean_fr_siret() cleans a column containing French company establishment identification number (SIRET) strings, and standardizes them in a given format. The function validate_fr_siret() validates either a single SIRET strings, a column of SIRET strings or a DataFrame of SIRET strings, returning True if the value is valid, and False otherwise.
clean_fr_siret()
validate_fr_siret()
True
False
SIRET strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “73282932000074”
compact
standard: SIRET strings with proper whitespace in the proper places, like “732 829 320 00074”
standard
siren: convert the SIRET number to a SIREN number, like “732829320”.
siren
tva: convert the SIRET number to a TVA number, like “44732829320”.
tva
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_fr_siret() and validate_fr_siret().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "siret": [ "73282932000074", "73282932000079", "999 999 999", "004085616", "002 724 334", "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_fr_siret
By default, clean_fr_siret will clean siret strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_fr_siret clean_fr_siret(df, column = "siret")
This section demonstrates the output parameter.
[3]:
clean_fr_siret(df, column = "siret", output_format="standard")
[4]:
clean_fr_siret(df, column = "siret", output_format="compact")
[5]:
clean_fr_siret(df, column = "siret", output_format="siren")
[6]:
clean_fr_siret(df, column = "siret", output_format="tva")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned SIRET strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[7]:
clean_fr_siret(df, column="siret", inplace=True)
[8]:
clean_fr_siret(df, "siret", errors="coerce")
[9]:
clean_fr_siret(df, "siret", errors="ignore")
validate_fr_siret() returns True when the input is a valid SIRET. Otherwise it returns False.
The input of validate_fr_siret() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_fr_siret() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_fr_siret() returns the validation result for the whole DataFrame.
[10]:
from dataprep.clean import validate_fr_siret print(validate_fr_siret("73282932000074")) print(validate_fr_siret("73282932000079")) print(validate_fr_siret("999 999 999")) print(validate_fr_siret("51824753556")) print(validate_fr_siret("004085616")) print(validate_fr_siret("hello")) print(validate_fr_siret(np.nan)) print(validate_fr_siret("NULL"))
True False False False False False False False
[11]:
validate_fr_siret(df["siret"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: siret, dtype: bool
[12]:
validate_fr_siret(df, column="siret")
[13]:
validate_fr_siret(df)
[ ]: