The function clean_my_nric() cleans a column containing Malaysian National Registration Identity Card Number (NRIC) strings, and standardizes them in a given format. The function validate_my_nric() validates either a single NRIC strings, a column of NRIC strings or a DataFrame of NRIC strings, returning True if the value is valid, and False otherwise.
clean_my_nric()
validate_my_nric()
True
False
NRIC strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “770305021234”
compact
standard: NRIC strings with proper whitespace in the proper places, like “770305-02-1234”
standard
birthdate: return the registration date or the birth date, like “1977-03-05”.
birthdate
birthplace: return a dict containing the birthplace of the person, like {‘state’: ‘Kedah’, ‘country’: ‘Malaysia’, ‘countries’: ‘Malaysia’}.
birthplace
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_my_nric() and validate_my_nric().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "nric": [ "770305021234", "771305-02-1234", "999 999 999", "004085616", "002 724 334", "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_my_nric
By default, clean_my_nric will clean nric strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_my_nric clean_my_nric(df, column = "nric")
This section demonstrates the output parameter.
[3]:
clean_my_nric(df, column = "nric", output_format="standard")
[4]:
clean_my_nric(df, column = "nric", output_format="compact")
[5]:
clean_my_nric(df, column = "nric", output_format="birthdate")
[6]:
clean_my_nric(df, column = "nric", output_format="birthplace")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned NRIC strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[7]:
clean_my_nric(df, column="nric", inplace=True)
[8]:
clean_my_nric(df, "nric", errors="coerce")
[9]:
clean_my_nric(df, "nric", errors="ignore")
validate_my_nric() returns True when the input is a valid NRIC. Otherwise it returns False.
The input of validate_my_nric() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_my_nric() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_my_nric() returns the validation result for the whole DataFrame.
[10]:
from dataprep.clean import validate_my_nric print(validate_my_nric("770305021234")) print(validate_my_nric("771305-02-1234")) print(validate_my_nric("999 999 999")) print(validate_my_nric("51824753556")) print(validate_my_nric("004085616")) print(validate_my_nric("hello")) print(validate_my_nric(np.nan)) print(validate_my_nric("NULL"))
True False False False False False False False
[11]:
validate_my_nric(df["nric"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: nric, dtype: bool
[12]:
validate_my_nric(df, column="nric")
[13]:
validate_my_nric(df)
[ ]: