Bulgarian Personal Numbers

Introduction

The function clean_bg_pnf() cleans a column containing Bulgarian personal number of a foreigner, and standardizes them in a given format. The function validate_bg_pnf() validates either a single PNF strings, a column of PNF strings or a DataFrame of PNF strings, returning True if the value is valid, and False otherwise.

PNF strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “7111042925”

  • standard: PNF strings with proper whitespace in the proper places. Note that in the case of PNF, the compact format is the same as the standard one.

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_bg_pnf() and validate_bg_pnf().

An example dataset containing PNF strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "pnf": [
            '7111 042 925',
            '7111042922',  # invalid check digit
            '71110A2922',  # invalid digit
            "002 724 334", # not PNF
            "hello",
            np.nan,
            "NULL",
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "1111 S Figueroa St, Los Angeles, CA 90015",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
pnf address
0 7111 042 925 123 Pine Ave.
1 7111042922 main st
2 71110A2922 1234 west main heights 57033
3 002 724 334 apt 1 789 s maple rd manhattan
4 hello 1111 S Figueroa St, Los Angeles, CA 90015
5 NaN (staples center) 1111 S Figueroa St, Los Angeles
6 NULL hello

1. Default clean_bg_pnf

By default, clean_bg_pnf will clean pnf strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_bg_pnf
clean_bg_pnf(df, column = "pnf")
[2]:
pnf address pnf_clean
0 7111 042 925 123 Pine Ave. 7111042925
1 7111042922 main st NaN
2 71110A2922 1234 west main heights 57033 NaN
3 002 724 334 apt 1 789 s maple rd manhattan NaN
4 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_bg_pnf(df, column = "pnf", output_format="standard")
[3]:
pnf address pnf_clean
0 7111 042 925 123 Pine Ave. 7111042925
1 7111042922 main st NaN
2 71110A2922 1234 west main heights 57033 NaN
3 002 724 334 apt 1 789 s maple rd manhattan NaN
4 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

compact

[4]:
clean_bg_pnf(df, column = "pnf", output_format="compact")
[4]:
pnf address pnf_clean
0 7111 042 925 123 Pine Ave. 7111042925
1 7111042922 main st NaN
2 71110A2922 1234 west main heights 57033 NaN
3 002 724 334 apt 1 789 s maple rd manhattan NaN
4 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned PNF strings is added with a title in the format "{original title}_clean".

[5]:
clean_bg_pnf(df, column="pnf", inplace=True)
[5]:
pnf_clean address
0 7111042925 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN 1111 S Figueroa St, Los Angeles, CA 90015
5 NaN (staples center) 1111 S Figueroa St, Los Angeles
6 NaN hello

4. errors parameter

coerce (default)

[6]:
clean_bg_pnf(df, "pnf", errors="coerce")
[6]:
pnf address pnf_clean
0 7111 042 925 123 Pine Ave. 7111042925
1 7111042922 main st NaN
2 71110A2922 1234 west main heights 57033 NaN
3 002 724 334 apt 1 789 s maple rd manhattan NaN
4 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

ignore

[7]:
clean_bg_pnf(df, "pnf", errors="ignore")
[7]:
pnf address pnf_clean
0 7111 042 925 123 Pine Ave. 7111042925
1 7111042922 main st 7111042922
2 71110A2922 1234 west main heights 57033 71110A2922
3 002 724 334 apt 1 789 s maple rd manhattan 002 724 334
4 hello 1111 S Figueroa St, Los Angeles, CA 90015 hello
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

4. validate_bg_pnf()

validate_bg_pnf() returns True when the input is a valid PNF. Otherwise it returns False.

The input of validate_bg_pnf() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_bg_pnf() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_bg_pnf() returns the validation result for the whole DataFrame.

[8]:
from dataprep.clean import validate_bg_pnf
print(validate_bg_pnf('7111 042 925'))
print(validate_bg_pnf('7111042922'))
print(validate_bg_pnf('71110A2922' ))
print(validate_bg_pnf('BE431150351'))
print(validate_bg_pnf("004085616"))
print(validate_bg_pnf("hello"))
print(validate_bg_pnf(np.nan))
print(validate_bg_pnf("NULL"))
True
False
False
False
False
False
False
False

Series

[9]:
validate_bg_pnf(df["pnf"])
[9]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
Name: pnf, dtype: bool

DataFrame + Specify Column

[10]:
validate_bg_pnf(df, column="pnf")
[10]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
Name: pnf, dtype: bool

Only DataFrame

[11]:
validate_bg_pnf(df)
[11]:
pnf address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
[ ]: