The function clean_pe_ruc() cleans a column containing Peruvian fiscal number (RUC) strings, and standardizes them in a given format. The function validate_pe_ruc() validates either a single RUC strings, a column of RUC strings or a DataFrame of RUC strings, returning True if the value is valid, and False otherwise.
clean_pe_ruc()
validate_pe_ruc()
True
False
RUC strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “20512333797”.
compact
standard: RUC strings with proper whitespace in the proper places. Note that in the case of RUC, the compact format is the same as the standard one.
standard
dni: return the DNI (CUI) part of the number for natural persons. Note if the RUC is not for natural persons, return NaN.
dni
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_pe_ruc() and validate_pe_ruc().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "ruc": [ "20512333797", "20512333798", '7542011030', '7552A10004', '8019010008', "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_pe_ruc
By default, clean_pe_ruc will clean ruc strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_pe_ruc clean_pe_ruc(df, column = "ruc")
This section demonstrates the output parameter.
[3]:
clean_pe_ruc(df, column = "ruc", output_format="standard")
[4]:
clean_pe_ruc(df, column = "ruc", output_format="compact")
[5]:
clean_pe_ruc(df, column = "ruc", output_format="dni")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned RUC strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[6]:
clean_pe_ruc(df, column="ruc", inplace=True)
[7]:
clean_pe_ruc(df, "ruc", errors="coerce")
[8]:
clean_pe_ruc(df, "ruc", errors="ignore")
validate_pe_ruc() returns True when the input is a valid RUC. Otherwise it returns False.
The input of validate_pe_ruc() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_pe_ruc() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_pe_ruc() returns the validation result for the whole DataFrame.
[9]:
from dataprep.clean import validate_pe_ruc print(validate_pe_ruc('20512333797')) print(validate_pe_ruc('20512333798')) print(validate_pe_ruc('7542011030')) print(validate_pe_ruc('7552A10004')) print(validate_pe_ruc('8019010008')) print(validate_pe_ruc("hello")) print(validate_pe_ruc(np.nan)) print(validate_pe_ruc("NULL"))
True False False False False False False False
[10]:
validate_pe_ruc(df["ruc"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: ruc, dtype: bool
[11]:
validate_pe_ruc(df, column="ruc")
[12]:
validate_pe_ruc(df)
[ ]: