Luxembourgian TVA Numbers

Introduction

The function clean_lu_tva() cleans a column containing Luxembourgian TVA number (TVA) strings, and standardizes them in a given format. The function validate_lu_tva() validates either a single TVA strings, a column of TVA strings or a DataFrame of TVA strings, returning True if the value is valid, and False otherwise.

TVA strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “15027442”

  • standard: TVA strings with proper whitespace in the proper places. Note that in the case of TVA, the compact format is the same as the standard one.

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_lu_tva() and validate_lu_tva().

An example dataset containing TVA strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "tva": [
            'LU 150 274 42',
            '150 274 43',
            'BE 428759497',
            'BE431150351',
            "002 724 334",
            "hello",
            np.nan,
            "NULL",
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "1111 S Figueroa St, Los Angeles, CA 90015",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
tva address
0 LU 150 274 42 123 Pine Ave.
1 150 274 43 main st
2 BE 428759497 1234 west main heights 57033
3 BE431150351 apt 1 789 s maple rd manhattan
4 002 724 334 robie house, 789 north main street
5 hello 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NULL hello

1. Default clean_lu_tva

By default, clean_lu_tva will clean tva strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_lu_tva
clean_lu_tva(df, column = "tva")
[2]:
tva address tva_clean
0 LU 150 274 42 123 Pine Ave. 15027442
1 150 274 43 main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_lu_tva(df, column = "tva", output_format="standard")
[3]:
tva address tva_clean
0 LU 150 274 42 123 Pine Ave. 15027442
1 150 274 43 main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

compact

[4]:
clean_lu_tva(df, column = "tva", output_format="compact")
[4]:
tva address tva_clean
0 LU 150 274 42 123 Pine Ave. 15027442
1 150 274 43 main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned TVA strings is added with a title in the format "{original title}_clean".

[5]:
clean_lu_tva(df, column="tva", inplace=True)
[5]:
tva_clean address
0 15027442 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NaN hello

4. errors parameter

coerce (default)

[6]:
clean_lu_tva(df, "tva", errors="coerce")
[6]:
tva address tva_clean
0 LU 150 274 42 123 Pine Ave. 15027442
1 150 274 43 main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

ignore

[7]:
clean_lu_tva(df, "tva", errors="ignore")
[7]:
tva address tva_clean
0 LU 150 274 42 123 Pine Ave. 15027442
1 150 274 43 main st 150 274 43
2 BE 428759497 1234 west main heights 57033 BE 428759497
3 BE431150351 apt 1 789 s maple rd manhattan BE431150351
4 002 724 334 robie house, 789 north main street 002 724 334
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 hello
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

4. validate_lu_tva()

validate_lu_tva() returns True when the input is a valid TVA. Otherwise it returns False.

The input of validate_lu_tva() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_lu_tva() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_lu_tva() returns the validation result for the whole DataFrame.

[8]:
from dataprep.clean import validate_lu_tva
print(validate_lu_tva('LU 150 274 42'))
print(validate_lu_tva('150 274 43'))
print(validate_lu_tva('BE 428759497'))
print(validate_lu_tva('BE431150351'))
print(validate_lu_tva("004085616"))
print(validate_lu_tva("hello"))
print(validate_lu_tva(np.nan))
print(validate_lu_tva("NULL"))
True
False
False
False
False
False
False
False

Series

[9]:
validate_lu_tva(df["tva"])
[9]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: tva, dtype: bool

DataFrame + Specify Column

[10]:
validate_lu_tva(df, column="tva")
[10]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: tva, dtype: bool

Only DataFrame

[11]:
validate_lu_tva(df)
[11]:
tva address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
7 False False
[ ]: