The function clean_ca_bn() cleans a column containing Canadian Business Number (BN) strings, and standardizes them in a given format. The function validate_ca_bn() validates either a single BN strings, a column of BN strings or a DataFrame of BN strings, returning True if the value is valid, and False otherwise.
clean_ca_bn()
validate_ca_bn()
True
False
BN strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “123026635”
compact
standard: BN strings with proper whitespace in the proper places. Note: in the case of BN, the compact format is the same as the standard one.
standard
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_ca_bn() and validate_ca_bn().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "bn": [ "12302 6635", "12302 6635 RC 0001", "12345678Z", "51 824 753 556", "hello", np.nan, "NULL" ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_ca_bn
By default, clean_ca_bn will clean bn strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_ca_bn clean_ca_bn(df, column = "bn")
This section demonstrates the output parameter.
[3]:
clean_ca_bn(df, column = "bn", output_format="standard")
[4]:
clean_ca_bn(df, column = "bn", output_format="compact")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned BN strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[5]:
clean_ca_bn(df, column="bn", inplace=True)
[6]:
clean_ca_bn(df, "bn", errors="coerce")
[7]:
clean_ca_bn(df, "bn", errors="ignore")
validate_ca_bn() returns True when the input is a valid BN. Otherwise it returns False.
The input of validate_ca_bn() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_ca_bn() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_ca_bn() returns the validation result for the whole DataFrame.
[8]:
from dataprep.clean import validate_ca_bn print(validate_ca_bn("12302 6635")) print(validate_ca_bn("12302 6635 RC 0001")) print(validate_ca_bn("12345678Z")) print(validate_ca_bn("51 824 753 556")) print(validate_ca_bn("hello")) print(validate_ca_bn(np.nan)) print(validate_ca_bn("NULL"))
True True False False False False False
[9]:
validate_ca_bn(df["bn"])
0 True 1 True 2 False 3 False 4 False 5 False 6 False Name: bn, dtype: bool
[10]:
validate_ca_bn(df, column="bn")
[11]:
validate_ca_bn(df)
[ ]: