Canadian Business Numbers

Introduction

The function clean_ca_bn() cleans a column containing Canadian Business Number (BN) strings, and standardizes them in a given format. The function validate_ca_bn() validates either a single BN strings, a column of BN strings or a DataFrame of BN strings, returning True if the value is valid, and False otherwise.

BN strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “123026635”

  • standard: BN strings with proper whitespace in the proper places. Note: in the case of BN, the compact format is the same as the standard one.

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_ca_bn() and validate_ca_bn().

An example dataset containing BN strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "bn": [
            "12302 6635",
            "12302 6635 RC 0001",
            "12345678Z",
            "51 824 753 556",
            "hello",
            np.nan,
            "NULL"
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
bn address
0 12302 6635 123 Pine Ave.
1 12302 6635 RC 0001 main st
2 12345678Z 1234 west main heights 57033
3 51 824 753 556 apt 1 789 s maple rd manhattan
4 hello robie house, 789 north main street
5 NaN (staples center) 1111 S Figueroa St, Los Angeles
6 NULL hello

1. Default clean_ca_bn

By default, clean_ca_bn will clean bn strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_ca_bn
clean_ca_bn(df, column = "bn")
[2]:
bn address bn_clean
0 12302 6635 123 Pine Ave. 123026635
1 12302 6635 RC 0001 main st 123026635RC0001
2 12345678Z 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_ca_bn(df, column = "bn", output_format="standard")
[3]:
bn address bn_clean
0 12302 6635 123 Pine Ave. 123026635
1 12302 6635 RC 0001 main st 123026635RC0001
2 12345678Z 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

compact

[4]:
clean_ca_bn(df, column = "bn", output_format="compact")
[4]:
bn address bn_clean
0 12302 6635 123 Pine Ave. 123026635
1 12302 6635 RC 0001 main st 123026635RC0001
2 12345678Z 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned BN strings is added with a title in the format "{original title}_clean".

[5]:
clean_ca_bn(df, column="bn", inplace=True)
[5]:
bn_clean address
0 123026635 123 Pine Ave.
1 123026635RC0001 main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN (staples center) 1111 S Figueroa St, Los Angeles
6 NaN hello

4. errors parameter

coerce (default)

[6]:
clean_ca_bn(df, "bn", errors="coerce")
[6]:
bn address bn_clean
0 12302 6635 123 Pine Ave. 123026635
1 12302 6635 RC 0001 main st 123026635RC0001
2 12345678Z 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

ignore

[7]:
clean_ca_bn(df, "bn", errors="ignore")
[7]:
bn address bn_clean
0 12302 6635 123 Pine Ave. 123026635
1 12302 6635 RC 0001 main st 123026635RC0001
2 12345678Z 1234 west main heights 57033 12345678Z
3 51 824 753 556 apt 1 789 s maple rd manhattan 51 824 753 556
4 hello robie house, 789 north main street hello
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

4. validate_ca_bn()

validate_ca_bn() returns True when the input is a valid BN. Otherwise it returns False.

The input of validate_ca_bn() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_ca_bn() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_ca_bn() returns the validation result for the whole DataFrame.

[8]:
from dataprep.clean import validate_ca_bn
print(validate_ca_bn("12302 6635"))
print(validate_ca_bn("12302 6635 RC 0001"))
print(validate_ca_bn("12345678Z"))
print(validate_ca_bn("51 824 753 556"))
print(validate_ca_bn("hello"))
print(validate_ca_bn(np.nan))
print(validate_ca_bn("NULL"))
True
True
False
False
False
False
False

Series

[9]:
validate_ca_bn(df["bn"])
[9]:
0     True
1     True
2    False
3    False
4    False
5    False
6    False
Name: bn, dtype: bool

DataFrame + Specify Column

[10]:
validate_ca_bn(df, column="bn")
[10]:
0     True
1     True
2    False
3    False
4    False
5    False
6    False
Name: bn, dtype: bool

Only DataFrame

[11]:
validate_ca_bn(df)
[11]:
bn address
0 True False
1 True False
2 False False
3 False False
4 False False
5 False False
6 False False
[ ]: