The function clean_it_aic() cleans a column containing Italian code for identification of drug (AIC) strings, and standardizes them in a given format. The function validate_it_aic() validates either a single AIC strings, a column of AIC strings or a DataFrame of AIC strings, returning True if the value is valid, and False otherwise.
clean_it_aic()
validate_it_aic()
True
False
AIC strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “000307052”
compact
standard: AIC strings with proper whitespace in the proper places. Note that in the case of AIC, the compact format is the same as the standard one.
standard
base10: convert a BASE32 representation to a BASE10 one, like “000307052”.
base10
base32: convert a BASE10 representation to a BASE32 one, like “009CVD”. Note ‘compact’ may contain both BASE10 and BASE32 represatation.
base32
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_it_aic() and validate_it_aic().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "aic": [ '000307052', '999999', '7542011030', '7552A10004', '8019010008', "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_it_aic
By default, clean_it_aic will clean aic strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_it_aic clean_it_aic(df, column = "aic")
This section demonstrates the output parameter.
[3]:
clean_it_aic(df, column = "aic", output_format="standard")
[4]:
clean_it_aic(df, column = "aic", output_format="compact")
[5]:
clean_it_aic(df, column = "aic", output_format="base10")
[6]:
clean_it_aic(df, column = "aic", output_format="base32")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned AIC strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[7]:
clean_it_aic(df, column="aic", inplace=True)
[8]:
clean_it_aic(df, "aic", errors="coerce")
[9]:
clean_it_aic(df, "aic", errors="ignore")
validate_it_aic() returns True when the input is a valid AIC. Otherwise it returns False.
The input of validate_it_aic() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_it_aic() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_it_aic() returns the validation result for the whole DataFrame.
[10]:
from dataprep.clean import validate_it_aic print(validate_it_aic('000307052')) print(validate_it_aic('999999')) print(validate_it_aic('7542011030')) print(validate_it_aic('7552A10004')) print(validate_it_aic('8019010008')) print(validate_it_aic("hello")) print(validate_it_aic(np.nan)) print(validate_it_aic("NULL"))
True False False False False False False False
[11]:
validate_it_aic(df["aic"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: aic, dtype: bool
[12]:
validate_it_aic(df, column="aic")
[13]:
validate_it_aic(df)
[ ]: