The function clean_gr_amka() cleans a column containing Greek social security number (AMKA) strings, and standardizes them in a given format. The function validate_gr_amka() validates either a single AMKA strings, a column of AMKA strings or a DataFrame of AMKA strings, returning True if the value is valid, and False otherwise.
clean_gr_amka()
validate_gr_amka()
True
False
AMKA strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “01013099997”
compact
standard: AMKA strings with proper whitespace in the proper places. Note that in the case of AMKA, the compact format is the same as the standard one.
standard
birthdate: split the date parts from the number and return the birth date, like “1930-01-01”.
birthdate
gender: get the person’s birth gender (‘M’ or ‘F’).
gender
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_gr_amka() and validate_gr_amka().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "amka": [ '01013099997', '01013099999', '7542011030', '7552A10004', '8019010008', "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_gr_amka
By default, clean_gr_amka will clean amka strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_gr_amka clean_gr_amka(df, column = "amka")
This section demonstrates the output parameter.
[3]:
clean_gr_amka(df, column = "amka", output_format="standard")
[4]:
clean_gr_amka(df, column = "amka", output_format="compact")
[5]:
clean_gr_amka(df, column = "amka", output_format="birthdate")
[6]:
clean_gr_amka(df, column = "amka", output_format="gender")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned AMKA strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[7]:
clean_gr_amka(df, column="amka", inplace=True)
[8]:
clean_gr_amka(df, "amka", errors="coerce")
[9]:
clean_gr_amka(df, "amka", errors="ignore")
validate_gr_amka() returns True when the input is a valid AMKA. Otherwise it returns False.
The input of validate_gr_amka() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_gr_amka() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_gr_amka() returns the validation result for the whole DataFrame.
[10]:
from dataprep.clean import validate_gr_amka print(validate_gr_amka('01013099997')) print(validate_gr_amka('01013099999')) print(validate_gr_amka('7542011030')) print(validate_gr_amka('7552A10004')) print(validate_gr_amka('8019010008')) print(validate_gr_amka("hello")) print(validate_gr_amka(np.nan)) print(validate_gr_amka("NULL"))
True False False False False False False False
[11]:
validate_gr_amka(df["amka"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: amka, dtype: bool
[12]:
validate_gr_amka(df, column="amka")
[13]:
validate_gr_amka(df)
[ ]: