Spanish NIF Numbers

Introduction

The function clean_es_nif() cleans a column containing Spanish NIF number (NIF) strings, and standardizes them in a given format. The function validate_es_nif() validates either a single NIF strings, a column of NIF strings or a DataFrame of NIF strings, returning True if the value is valid, and False otherwise.

NIF strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “B58378431”

  • standard: NIF strings with proper whitespace in the proper places. Note that in the case of NIF, the compact format is the same as the standard one.

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_es_nif() and validate_es_nif().

An example dataset containing NIF strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "nif": [
            'ES B-58378431',
            'B64717839',
            'BE 428759497',
            'BE431150351',
            "002 724 334",
            "hello",
            np.nan,
            "NULL",
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "1111 S Figueroa St, Los Angeles, CA 90015",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
nif address
0 ES B-58378431 123 Pine Ave.
1 B64717839 main st
2 BE 428759497 1234 west main heights 57033
3 BE431150351 apt 1 789 s maple rd manhattan
4 002 724 334 robie house, 789 north main street
5 hello 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NULL hello

1. Default clean_es_nif

By default, clean_es_nif will clean nif strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_es_nif
clean_es_nif(df, column = "nif")
[2]:
nif address nif_clean
0 ES B-58378431 123 Pine Ave. B58378431
1 B64717839 main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_es_nif(df, column = "nif", output_format="standard")
[3]:
nif address nif_clean
0 ES B-58378431 123 Pine Ave. B58378431
1 B64717839 main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

compact

[4]:
clean_es_nif(df, column = "nif", output_format="compact")
[4]:
nif address nif_clean
0 ES B-58378431 123 Pine Ave. B58378431
1 B64717839 main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned NIF strings is added with a title in the format "{original title}_clean".

[5]:
clean_es_nif(df, column="nif", inplace=True)
[5]:
nif_clean address
0 B58378431 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NaN hello

4. errors parameter

coerce (default)

[6]:
clean_es_nif(df, "nif", errors="coerce")
[6]:
nif address nif_clean
0 ES B-58378431 123 Pine Ave. B58378431
1 B64717839 main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

ignore

[7]:
clean_es_nif(df, "nif", errors="ignore")
[7]:
nif address nif_clean
0 ES B-58378431 123 Pine Ave. B58378431
1 B64717839 main st B64717839
2 BE 428759497 1234 west main heights 57033 BE 428759497
3 BE431150351 apt 1 789 s maple rd manhattan BE431150351
4 002 724 334 robie house, 789 north main street 002 724 334
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 hello
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

4. validate_es_nif()

validate_es_nif() returns True when the input is a valid NIF. Otherwise it returns False.

The input of validate_es_nif() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_es_nif() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_es_nif() returns the validation result for the whole DataFrame.

[8]:
from dataprep.clean import validate_es_nif
print(validate_es_nif('ES B-58378431'))
print(validate_es_nif('B64717839'))
print(validate_es_nif('BE 428759497'))
print(validate_es_nif('BE431150351'))
print(validate_es_nif("004085616"))
print(validate_es_nif("hello"))
print(validate_es_nif(np.nan))
print(validate_es_nif("NULL"))
True
False
False
False
False
False
False
False

Series

[9]:
validate_es_nif(df["nif"])
[9]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: nif, dtype: bool

DataFrame + Specify Column

[10]:
validate_es_nif(df, column="nif")
[10]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: nif, dtype: bool

Only DataFrame

[11]:
validate_es_nif(df)
[11]:
nif address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
7 False False
[ ]: