New Zealand Bank Account Numbers

Introduction

The function clean_nz_bankaccount() cleans a column containing New Zealand bank account number (bankaccount) strings, and standardizes them in a given format. The function validate_nz_bankaccount() validates either a single bankaccount strings, a column of bankaccount strings or a DataFrame of bankaccount strings, returning True if the value is valid, and False otherwise.

bankaccount strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “0102420100194000”

  • standard: bankaccount strings with proper whitespace in the proper places, like “01-0242-0100194-000”

  • info: return a dictionary of data about the supplied number, like {‘bank’: ‘ANZ Bank New Zealand’, ‘branch’: ‘ANZ Retail’}. This typically returns the name of the bank and branch and a BIC if it is valid.

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_nz_bankaccount() and validate_nz_bankaccount().

An example dataset containing bankaccount strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "bankaccount": [
            "0102420100194000",
            "01-0242-0100195-00",
            "999 999 999",
            "004085616",
            "002 724 334",
            "hello",
            np.nan,
            "NULL",
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "1111 S Figueroa St, Los Angeles, CA 90015",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
bankaccount address
0 0102420100194000 123 Pine Ave.
1 01-0242-0100195-00 main st
2 999 999 999 1234 west main heights 57033
3 004085616 apt 1 789 s maple rd manhattan
4 002 724 334 robie house, 789 north main street
5 hello 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NULL hello

1. Default clean_nz_bankaccount

By default, clean_nz_bankaccount will clean bankaccount strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_nz_bankaccount
clean_nz_bankaccount(df, column = "bankaccount")
[2]:
bankaccount address bankaccount_clean
0 0102420100194000 123 Pine Ave. 01-0242-0100194-000
1 01-0242-0100195-00 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_nz_bankaccount(df, column = "bankaccount", output_format="standard")
[3]:
bankaccount address bankaccount_clean
0 0102420100194000 123 Pine Ave. 01-0242-0100194-000
1 01-0242-0100195-00 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

compact

[4]:
clean_nz_bankaccount(df, column = "bankaccount", output_format="compact")
[4]:
bankaccount address bankaccount_clean
0 0102420100194000 123 Pine Ave. 0102420100194000
1 01-0242-0100195-00 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

info

[5]:
clean_nz_bankaccount(df, column = "bankaccount", output_format="info")
[5]:
bankaccount address bankaccount_clean
0 0102420100194000 123 Pine Ave. {'bank': 'ANZ Bank New Zealand', 'branch': 'AN...
1 01-0242-0100195-00 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned bankaccount strings is added with a title in the format "{original title}_clean".

[6]:
clean_nz_bankaccount(df, column="bankaccount", inplace=True)
[6]:
bankaccount_clean address
0 01-0242-0100194-000 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NaN hello

4. errors parameter

coerce (default)

[7]:
clean_nz_bankaccount(df, "bankaccount", errors="coerce")
[7]:
bankaccount address bankaccount_clean
0 0102420100194000 123 Pine Ave. 01-0242-0100194-000
1 01-0242-0100195-00 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

ignore

[8]:
clean_nz_bankaccount(df, "bankaccount", errors="ignore")
[8]:
bankaccount address bankaccount_clean
0 0102420100194000 123 Pine Ave. 01-0242-0100194-000
1 01-0242-0100195-00 main st 01-0242-0100195-00
2 999 999 999 1234 west main heights 57033 999 999 999
3 004085616 apt 1 789 s maple rd manhattan 004085616
4 002 724 334 robie house, 789 north main street 002 724 334
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 hello
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

4. validate_nz_bankaccount()

validate_nz_bankaccount() returns True when the input is a valid bankaccount. Otherwise it returns False.

The input of validate_nz_bankaccount() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_nz_bankaccount() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_nz_bankaccount() returns the validation result for the whole DataFrame.

[9]:
from dataprep.clean import validate_nz_bankaccount
print(validate_nz_bankaccount("0102420100194000"))
print(validate_nz_bankaccount("01-0242-0100195-00"))
print(validate_nz_bankaccount("999 999 999"))
print(validate_nz_bankaccount("51824753556"))
print(validate_nz_bankaccount("004085616"))
print(validate_nz_bankaccount("hello"))
print(validate_nz_bankaccount(np.nan))
print(validate_nz_bankaccount("NULL"))
True
False
False
False
False
False
False
False

Series

[10]:
validate_nz_bankaccount(df["bankaccount"])
[10]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: bankaccount, dtype: bool

DataFrame + Specify Column

[11]:
validate_nz_bankaccount(df, column="bankaccount")
[11]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: bankaccount, dtype: bool

Only DataFrame

[12]:
validate_nz_bankaccount(df)
[12]:
bankaccount address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
7 False False
[ ]: