The function clean_nz_bankaccount() cleans a column containing New Zealand bank account number (bankaccount) strings, and standardizes them in a given format. The function validate_nz_bankaccount() validates either a single bankaccount strings, a column of bankaccount strings or a DataFrame of bankaccount strings, returning True if the value is valid, and False otherwise.
clean_nz_bankaccount()
validate_nz_bankaccount()
True
False
bankaccount strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “0102420100194000”
compact
standard: bankaccount strings with proper whitespace in the proper places, like “01-0242-0100194-000”
standard
info: return a dictionary of data about the supplied number, like {‘bank’: ‘ANZ Bank New Zealand’, ‘branch’: ‘ANZ Retail’}. This typically returns the name of the bank and branch and a BIC if it is valid.
info
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_nz_bankaccount() and validate_nz_bankaccount().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "bankaccount": [ "0102420100194000", "01-0242-0100195-00", "999 999 999", "004085616", "002 724 334", "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_nz_bankaccount
By default, clean_nz_bankaccount will clean bankaccount strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_nz_bankaccount clean_nz_bankaccount(df, column = "bankaccount")
This section demonstrates the output parameter.
[3]:
clean_nz_bankaccount(df, column = "bankaccount", output_format="standard")
[4]:
clean_nz_bankaccount(df, column = "bankaccount", output_format="compact")
[5]:
clean_nz_bankaccount(df, column = "bankaccount", output_format="info")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned bankaccount strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[6]:
clean_nz_bankaccount(df, column="bankaccount", inplace=True)
[7]:
clean_nz_bankaccount(df, "bankaccount", errors="coerce")
[8]:
clean_nz_bankaccount(df, "bankaccount", errors="ignore")
validate_nz_bankaccount() returns True when the input is a valid bankaccount. Otherwise it returns False.
The input of validate_nz_bankaccount() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_nz_bankaccount() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_nz_bankaccount() returns the validation result for the whole DataFrame.
[9]:
from dataprep.clean import validate_nz_bankaccount print(validate_nz_bankaccount("0102420100194000")) print(validate_nz_bankaccount("01-0242-0100195-00")) print(validate_nz_bankaccount("999 999 999")) print(validate_nz_bankaccount("51824753556")) print(validate_nz_bankaccount("004085616")) print(validate_nz_bankaccount("hello")) print(validate_nz_bankaccount(np.nan)) print(validate_nz_bankaccount("NULL"))
True False False False False False False False
[10]:
validate_nz_bankaccount(df["bankaccount"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: bankaccount, dtype: bool
[11]:
validate_nz_bankaccount(df, column="bankaccount")
[12]:
validate_nz_bankaccount(df)
[ ]: