The function clean_br_cnpj() cleans a column containing Brazilian company identifier (CNPJ) strings, and standardizes them in a given format. The function validate_br_cnpj() validates either a single cnpj strings, a column of CNPJ strings or a DataFrame of CNPJ strings, returning True if the value is valid, and False otherwise.
clean_br_cnpj()
validate_br_cnpj()
True
False
CNPJ strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “16727230000197”
compact
standard: cnpj strings with proper whitespace in the proper places, like “16.727.230/0001-97”
standard
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_br_cnpj() and validate_br_cnpj().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "cnpj": [ "16.727.230/0001-97", "16.727.230.0001-98", "16.727.230/0001=97", "16727230000197", "hello", np.nan, "NULL" ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_br_cnpj
By default, clean_br_cnpj will clean cnpj strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_br_cnpj clean_br_cnpj(df, column = "cnpj")
This section demonstrates the output parameter.
[3]:
clean_br_cnpj(df, column = "cnpj", output_format="standard")
[4]:
clean_br_cnpj(df, column = "cnpj", output_format="compact")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned CNPJ strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[5]:
clean_br_cnpj(df, column="cnpj", inplace=True)
[6]:
clean_br_cnpj(df, "cnpj", errors="coerce")
[7]:
clean_br_cnpj(df, "cnpj", errors="ignore")
validate_br_cnpj() returns True when the input is a valid CNPJ. Otherwise it returns False.
The input of validate_br_cnpj() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_br_cnpj() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_br_cnpj() returns the validation result for the whole DataFrame.
[8]:
from dataprep.clean import validate_br_cnpj print(validate_br_cnpj('16.727.230/0001-97')) print(validate_br_cnpj('16.727.230.0001-98')) print(validate_br_cnpj('16.727.230/0001=97')) print(validate_br_cnpj("51 824 753 556")) print(validate_br_cnpj("hello")) print(validate_br_cnpj(np.nan)) print(validate_br_cnpj("NULL"))
True False False False False False False
[9]:
validate_br_cnpj(df["cnpj"])
0 True 1 False 2 False 3 True 4 False 5 False 6 False Name: cnpj, dtype: bool
[10]:
validate_br_cnpj(df, column="cnpj")
[11]:
validate_br_cnpj(df)
[ ]: