The function clean_au_acn() cleans a column containing Australian Company Number (ACN) strings, and standardizes them in a given format. The function validate_au_acn() validates either a single ACN strings, a column of ACN strings or a DataFrame of ACN strings, returning True if the value is valid, and False otherwise.
clean_au_acn()
validate_au_acn()
True
False
ACN strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “004085616”
compact
standard: ACN strings with proper whitespace in the proper places, like “004 085 616”
standard
abn: convert the number to an Australian Business Number (ABN) in compact format, like “53004085616”.
abn
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_au_acn() and validate_au_acn().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "acn": [ "004 085 616", "010 499 966", "999 999 999", "004085616", "002 724 334", "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_au_acn
By default, clean_au_acn will clean acn strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_au_acn clean_au_acn(df, column = "acn")
This section demonstrates the output parameter.
[3]:
clean_au_acn(df, column = "acn", output_format="standard")
[4]:
clean_au_acn(df, column = "acn", output_format="compact")
[5]:
clean_au_acn(df, column = "acn", output_format="abn")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned ACN strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[6]:
clean_au_acn(df, column="acn", inplace=True)
[7]:
clean_au_acn(df, "acn", errors="coerce")
[8]:
clean_au_acn(df, "acn", errors="ignore")
validate_au_acn() returns True when the input is a valid ACN. Otherwise it returns False.
The input of validate_au_acn() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_au_acn() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_au_acn() returns the validation result for the whole DataFrame.
[9]:
from dataprep.clean import validate_au_acn print(validate_au_acn("004 085 616")) print(validate_au_acn("010 499 966")) print(validate_au_acn("999 999 999")) print(validate_au_acn("51824753556")) print(validate_au_acn("004085616")) print(validate_au_acn("hello")) print(validate_au_acn(np.nan)) print(validate_au_acn("NULL"))
True True False False True False False False
[10]:
validate_au_acn(df["acn"])
0 True 1 True 2 False 3 True 4 True 5 False 6 False 7 False Name: acn, dtype: bool
[11]:
validate_au_acn(df, column="acn")
[12]:
validate_au_acn(df)
[ ]: