Indian Permanent Account Numbers

Introduction

The function clean_in_pan() cleans a column containing Indian Permanent Account number (PAN) strings, and standardizes them in a given format. The function validate_in_pan() validates either a single PAN strings, a column of PAN strings or a DataFrame of PAN strings, returning True if the value is valid, and False otherwise.

PAN strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “ACUPA7085R”

  • standard: PAN strings with proper whitespace in the proper places. Note that in the case of PAN, the compact format is the same as the standard one.

  • info: return a dictionary containing information that can be decoded from the PAN, like {‘card_holder_type’: ‘Individual’, ‘initial’: ‘A’}.

  • mask: mask the PAN as per CBDT masking standard, like “ACUPAXXXXR”.

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_in_pan() and validate_in_pan().

An example dataset containing PAN strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "pan": [
            'ACUPA7085R',
            '234123412347',
            '7542011030',
            '7552A10004',
            '8019010008',
            "hello",
            np.nan,
            "NULL",
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "1111 S Figueroa St, Los Angeles, CA 90015",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
pan address
0 ACUPA7085R 123 Pine Ave.
1 234123412347 main st
2 7542011030 1234 west main heights 57033
3 7552A10004 apt 1 789 s maple rd manhattan
4 8019010008 robie house, 789 north main street
5 hello 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NULL hello

1. Default clean_in_pan

By default, clean_in_pan will clean pan strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_in_pan
clean_in_pan(df, column = "pan")
[2]:
pan address pan_clean
0 ACUPA7085R 123 Pine Ave. ACUPA7085R
1 234123412347 main st NaN
2 7542011030 1234 west main heights 57033 NaN
3 7552A10004 apt 1 789 s maple rd manhattan NaN
4 8019010008 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_in_pan(df, column = "pan", output_format="standard")
[3]:
pan address pan_clean
0 ACUPA7085R 123 Pine Ave. ACUPA7085R
1 234123412347 main st NaN
2 7542011030 1234 west main heights 57033 NaN
3 7552A10004 apt 1 789 s maple rd manhattan NaN
4 8019010008 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

compact

[4]:
clean_in_pan(df, column = "pan", output_format="compact")
[4]:
pan address pan_clean
0 ACUPA7085R 123 Pine Ave. ACUPA7085R
1 234123412347 main st NaN
2 7542011030 1234 west main heights 57033 NaN
3 7552A10004 apt 1 789 s maple rd manhattan NaN
4 8019010008 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

info

[5]:
clean_in_pan(df, column = "pan", output_format="info")
[5]:
pan address pan_clean
0 ACUPA7085R 123 Pine Ave. {'card_holder_type': 'Individual', 'initial': ...
1 234123412347 main st NaN
2 7542011030 1234 west main heights 57033 NaN
3 7552A10004 apt 1 789 s maple rd manhattan NaN
4 8019010008 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

mask

[6]:
clean_in_pan(df, column = "pan", output_format="mask")
[6]:
pan address pan_clean
0 ACUPA7085R 123 Pine Ave. ACUPAXXXXR
1 234123412347 main st NaN
2 7542011030 1234 west main heights 57033 NaN
3 7552A10004 apt 1 789 s maple rd manhattan NaN
4 8019010008 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned PAN strings is added with a title in the format "{original title}_clean".

[7]:
clean_in_pan(df, column="pan", inplace=True)
[7]:
pan_clean address
0 ACUPA7085R 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NaN hello

4. errors parameter

coerce (default)

[8]:
clean_in_pan(df, "pan", errors="coerce")
[8]:
pan address pan_clean
0 ACUPA7085R 123 Pine Ave. ACUPA7085R
1 234123412347 main st NaN
2 7542011030 1234 west main heights 57033 NaN
3 7552A10004 apt 1 789 s maple rd manhattan NaN
4 8019010008 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

ignore

[9]:
clean_in_pan(df, "pan", errors="ignore")
[9]:
pan address pan_clean
0 ACUPA7085R 123 Pine Ave. ACUPA7085R
1 234123412347 main st 234123412347
2 7542011030 1234 west main heights 57033 7542011030
3 7552A10004 apt 1 789 s maple rd manhattan 7552A10004
4 8019010008 robie house, 789 north main street 8019010008
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 hello
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

4. validate_in_pan()

validate_in_pan() returns True when the input is a valid PAN. Otherwise it returns False.

The input of validate_in_pan() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_in_pan() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_in_pan() returns the validation result for the whole DataFrame.

[10]:
from dataprep.clean import validate_in_pan
print(validate_in_pan('ACUPA7085R'))
print(validate_in_pan('234123412347'))
print(validate_in_pan('7542011030'))
print(validate_in_pan('7552A10004'))
print(validate_in_pan('8019010008'))
print(validate_in_pan("hello"))
print(validate_in_pan(np.nan))
print(validate_in_pan("NULL"))
True
False
False
False
False
False
False
False

Series

[11]:
validate_in_pan(df["pan"])
[11]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: pan, dtype: bool

DataFrame + Specify Column

[12]:
validate_in_pan(df, column="pan")
[12]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: pan, dtype: bool

Only DataFrame

[13]:
validate_in_pan(df)
[13]:
pan address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
7 False False
[ ]: