The function clean_in_pan() cleans a column containing Indian Permanent Account number (PAN) strings, and standardizes them in a given format. The function validate_in_pan() validates either a single PAN strings, a column of PAN strings or a DataFrame of PAN strings, returning True if the value is valid, and False otherwise.
clean_in_pan()
validate_in_pan()
True
False
PAN strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “ACUPA7085R”
compact
standard: PAN strings with proper whitespace in the proper places. Note that in the case of PAN, the compact format is the same as the standard one.
standard
info: return a dictionary containing information that can be decoded from the PAN, like {‘card_holder_type’: ‘Individual’, ‘initial’: ‘A’}.
info
mask: mask the PAN as per CBDT masking standard, like “ACUPAXXXXR”.
mask
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_in_pan() and validate_in_pan().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "pan": [ 'ACUPA7085R', '234123412347', '7542011030', '7552A10004', '8019010008', "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_in_pan
By default, clean_in_pan will clean pan strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_in_pan clean_in_pan(df, column = "pan")
This section demonstrates the output parameter.
[3]:
clean_in_pan(df, column = "pan", output_format="standard")
[4]:
clean_in_pan(df, column = "pan", output_format="compact")
[5]:
clean_in_pan(df, column = "pan", output_format="info")
[6]:
clean_in_pan(df, column = "pan", output_format="mask")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned PAN strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[7]:
clean_in_pan(df, column="pan", inplace=True)
[8]:
clean_in_pan(df, "pan", errors="coerce")
[9]:
clean_in_pan(df, "pan", errors="ignore")
validate_in_pan() returns True when the input is a valid PAN. Otherwise it returns False.
The input of validate_in_pan() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_in_pan() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_in_pan() returns the validation result for the whole DataFrame.
[10]:
from dataprep.clean import validate_in_pan print(validate_in_pan('ACUPA7085R')) print(validate_in_pan('234123412347')) print(validate_in_pan('7542011030')) print(validate_in_pan('7552A10004')) print(validate_in_pan('8019010008')) print(validate_in_pan("hello")) print(validate_in_pan(np.nan)) print(validate_in_pan("NULL"))
True False False False False False False False
[11]:
validate_in_pan(df["pan"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: pan, dtype: bool
[12]:
validate_in_pan(df, column="pan")
[13]:
validate_in_pan(df)
[ ]: