The function clean_ee_ik() cleans a column containing Estonian Personcal ID number (IK) strings, and standardizes them in a given format. The function validate_ee_ik() validates either a single IK strings, a column of IK strings or a DataFrame of IK strings, returning True if the value is valid, and False otherwise.
clean_ee_ik()
validate_ee_ik()
True
False
IK strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “36805280109”
compact
standard: IK strings with proper whitespace in the proper places. Note that in the case of IK, the compact format is the same as the standard one.
standard
birthdate: split the date parts from the number and return the birth date, like “1875-03-16”.
birthdate
gender: get the person’s birth gender (‘M’ or ‘F’).
gender
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_ee_ik() and validate_ee_ik().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "ik": [ '36805280109', '36805280108', '7542011030', '7552A10004', # invalid digit '8019010008', # invalid date "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_ee_ik
By default, clean_ee_ik will clean ik strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_ee_ik clean_ee_ik(df, column = "ik")
This section demonstrates the output parameter.
[3]:
clean_ee_ik(df, column = "ik", output_format="standard")
[4]:
clean_ee_ik(df, column = "ik", output_format="compact")
[5]:
clean_ee_ik(df, column = "ik", output_format="birthdate")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned IK strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[6]:
clean_ee_ik(df, column="ik", inplace=True)
[7]:
clean_ee_ik(df, "ik", errors="coerce")
[8]:
clean_ee_ik(df, "ik", errors="ignore")
validate_ee_ik() returns True when the input is a valid IK. Otherwise it returns False.
The input of validate_ee_ik() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_ee_ik() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_ee_ik() returns the validation result for the whole DataFrame.
[9]:
from dataprep.clean import validate_ee_ik print(validate_ee_ik('36805280109')) print(validate_ee_ik('36805280108')) print(validate_ee_ik('7542011030')) print(validate_ee_ik('7552A10004')) print(validate_ee_ik('8019010008')) print(validate_ee_ik("hello")) print(validate_ee_ik(np.nan)) print(validate_ee_ik("NULL"))
True False False False False False False False
[10]:
validate_ee_ik(df["ik"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: ik, dtype: bool
[11]:
validate_ee_ik(df, column="ik")
[12]:
validate_ee_ik(df)
[ ]: