The function clean_ch_esr() cleans a column containing Swiss EinzahlungsSchein mit Referenznummer (ESR) strings, and standardizes them in a given format. The function validate_ch_esr() validates either a single ESR strings, a column of ESR strings or a DataFrame of ESR strings, returning True if the value is valid, and False otherwise.
clean_ch_esr()
validate_ch_esr()
True
False
ESR strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “1878583”
compact
standard: ESR strings with proper whitespace in the proper places, like “00 00000 00000 00000 00018 78583”
standard
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_ch_esr() and validate_ch_esr().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "esr": [ "18 78583", "210000000003139471430009016", "51824753556", "51 824 753 556", "hello", np.nan, "NULL" ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_ch_esr
By default, clean_ch_esr will clean esr strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_ch_esr clean_ch_esr(df, column = "esr")
This section demonstrates the output parameter.
[3]:
clean_ch_esr(df, column = "esr", output_format="standard")
[4]:
clean_ch_esr(df, column = "esr", output_format="compact")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned ESR strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[5]:
clean_ch_esr(df, column="esr", inplace=True)
[6]:
clean_ch_esr(df, "esr", errors="coerce")
[7]:
clean_ch_esr(df, "esr", errors="ignore")
validate_ch_esr() returns True when the input is a valid ESR. Otherwise it returns False.
The input of validate_ch_esr() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_ch_esr() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_ch_esr() returns the validation result for the whole DataFrame.
[8]:
from dataprep.clean import validate_ch_esr print(validate_ch_esr("18 78583")) print(validate_ch_esr("210000000003139471430009016")) print(validate_ch_esr("51824753556")) print(validate_ch_esr("51 824 753 556")) print(validate_ch_esr("hello")) print(validate_ch_esr(np.nan)) print(validate_ch_esr("NULL"))
True False False False False False False
[9]:
validate_ch_esr(df["esr"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False Name: esr, dtype: bool
[10]:
validate_ch_esr(df, column="esr")
[11]:
validate_ch_esr(df)
[ ]: