The function clean_cr_cpf() cleans a column containing Costa Rica physical person ID number (CPF) strings, and standardizes them in a given format. The function validate_cr_cpf() validates either a single CPF strings, a column of CPF strings or a DataFrame of CPF strings, returning True if the value is valid, and False otherwise.
clean_cr_cpf()
validate_cr_cpf()
True
False
CPF strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “0106130584”
compact
standard: CPF strings with proper whitespace in the proper places, like “01-0613-0584”
standard
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_cr_cpf() and validate_cr_cpf().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "cpf": [ "1-613-584", "30-1234-1234", "51824753556", "51 824 753 556", "hello", np.nan, "NULL" ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_cr_cpf
By default, clean_cr_cpf will clean cpf strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_cr_cpf clean_cr_cpf(df, column = "cpf")
This section demonstrates the output parameter.
[3]:
clean_cr_cpf(df, column = "cpf", output_format="standard")
[4]:
clean_cr_cpf(df, column = "cpf", output_format="compact")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned CPF strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[5]:
clean_cr_cpf(df, column="cpf", inplace=True)
[6]:
clean_cr_cpf(df, "cpf", errors="coerce")
[7]:
clean_cr_cpf(df, "cpf", errors="ignore")
validate_cr_cpf() returns True when the input is a valid CPF. Otherwise it returns False.
The input of validate_cr_cpf() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_cr_cpf() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_cr_cpf() returns the validation result for the whole DataFrame.
[8]:
from dataprep.clean import validate_cr_cpf print(validate_cr_cpf("1-613-584")) print(validate_cr_cpf("30-1234-1234")) print(validate_cr_cpf("51824753556")) print(validate_cr_cpf("51 824 753 556")) print(validate_cr_cpf("hello")) print(validate_cr_cpf(np.nan)) print(validate_cr_cpf("NULL"))
True False False False False False False
[9]:
validate_cr_cpf(df["cpf"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False Name: cpf, dtype: bool
[10]:
validate_cr_cpf(df, column="cpf")
[11]:
validate_cr_cpf(df)
[ ]: