The function clean_ec_ci() cleans a column containing Ecuadorian personal identity code (CI) strings, and standardizes them in a given format. The function validate_ec_ci() validates either a single CI strings, a column of CI strings or a DataFrame of CI strings, returning True if the value is valid, and False otherwise.
clean_ec_ci()
validate_ec_ci()
True
False
CI strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “1714307103”
compact
standard: CI strings with proper whitespace in the proper places. Note that in the case of CI, the compact format is the same as the standard one.
standard
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_ec_ci() and validate_ec_ci().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "ci": [ '171430710-3', 'BE431150351', 'BE 428759497', 'BE431150351', "002 724 334", "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_ec_ci
By default, clean_ec_ci will clean ci strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_ec_ci clean_ec_ci(df, column = "ci")
This section demonstrates the output parameter.
[3]:
clean_ec_ci(df, column = "ci", output_format="standard")
[4]:
clean_ec_ci(df, column = "ci", output_format="compact")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned CI strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[5]:
clean_ec_ci(df, column="ci", inplace=True)
[6]:
clean_ec_ci(df, "ci", errors="coerce")
[7]:
clean_ec_ci(df, "ci", errors="ignore")
validate_ec_ci() returns True when the input is a valid CI. Otherwise it returns False.
The input of validate_ec_ci() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_ec_ci() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_ec_ci() returns the validation result for the whole DataFrame.
[8]:
from dataprep.clean import validate_ec_ci print(validate_ec_ci("171430710-3")) print(validate_ec_ci("BE431150351")) print(validate_ec_ci('BE 428759497')) print(validate_ec_ci('BE431150351')) print(validate_ec_ci("004085616")) print(validate_ec_ci("hello")) print(validate_ec_ci(np.nan)) print(validate_ec_ci("NULL"))
True False False False False False False False
[9]:
validate_ec_ci(df["ci"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: ci, dtype: bool
[10]:
validate_ec_ci(df, column="ci")
[11]:
validate_ec_ci(df)
[ ]: