The function clean_de_stnr() cleans a column containing German tax numbers (STNR) strings, and standardizes them in a given format. The function validate_de_stnr() validates either a single STNR strings, a column of STNR strings or a DataFrame of STNR strings, returning True if the value is valid, and False otherwise.
clean_de_stnr()
validate_de_stnr()
True
False
STNR strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “18181508155”
compact
standard: STNR strings with proper whitespace in the proper places, like “181/815/0815 5”
standard
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_de_stnr() and validate_de_stnr().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "stnr": [ ' 181/815/0815 5', "136695978", "201/123/12340", "4151081508156", "hello", np.nan, "NULL" ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_de_stnr
By default, clean_de_stnr will clean stnr strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_de_stnr clean_de_stnr(df, column = "stnr")
This section demonstrates the output parameter.
[3]:
clean_de_stnr(df, column = "stnr", output_format="standard")
[4]:
clean_de_stnr(df, column = "stnr", output_format="compact")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned STNR strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[5]:
clean_de_stnr(df, column="stnr", inplace=True)
[6]:
clean_de_stnr(df, "stnr", errors="coerce")
[7]:
clean_de_stnr(df, "stnr", errors="ignore")
validate_de_stnr() returns True when the input is a valid STNR. Otherwise it returns False.
The input of validate_de_stnr() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_de_stnr() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_de_stnr() returns the validation result for the whole DataFrame.
[8]:
from dataprep.clean import validate_de_stnr print(validate_de_stnr("181/815/0815 5")) print(validate_de_stnr("136695978")) print(validate_de_stnr("201/123/12340")) print(validate_de_stnr("4151081508156")) print(validate_de_stnr("hello")) print(validate_de_stnr(np.nan)) print(validate_de_stnr("NULL"))
True False True True False False False
[9]:
validate_de_stnr(df["stnr"])
0 True 1 False 2 True 3 True 4 False 5 False 6 False Name: stnr, dtype: bool
[10]:
validate_de_stnr(df, column="stnr")
[11]:
validate_de_stnr(df)
region
Specifically, region can be supplied to validate_de_stnr to verify that the number is assigned in that region.
validate_de_stnr
[12]:
validate_de_stnr(df["stnr"], region='Sachsen')
0 False 1 False 2 True 3 False 4 False 5 False 6 False Name: stnr, dtype: bool
[13]:
validate_de_stnr(df["stnr"], region='Thuringen')
0 True 1 False 2 False 3 True 4 False 5 False 6 False Name: stnr, dtype: bool
[ ]: