German Tax Numbers

Introduction

The function clean_de_stnr() cleans a column containing German tax numbers (STNR) strings, and standardizes them in a given format. The function validate_de_stnr() validates either a single STNR strings, a column of STNR strings or a DataFrame of STNR strings, returning True if the value is valid, and False otherwise.

STNR strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “18181508155”

  • standard: STNR strings with proper whitespace in the proper places, like “181/815/0815 5”

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_de_stnr() and validate_de_stnr().

An example dataset containing STNR strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "stnr": [
            ' 181/815/0815 5',
            "136695978",
            "201/123/12340",
            "4151081508156",
            "hello",
            np.nan,
            "NULL"
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
stnr address
0 181/815/0815 5 123 Pine Ave.
1 136695978 main st
2 201/123/12340 1234 west main heights 57033
3 4151081508156 apt 1 789 s maple rd manhattan
4 hello robie house, 789 north main street
5 NaN (staples center) 1111 S Figueroa St, Los Angeles
6 NULL hello

1. Default clean_de_stnr

By default, clean_de_stnr will clean stnr strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_de_stnr
clean_de_stnr(df, column = "stnr")
[2]:
stnr address stnr_clean
0 181/815/0815 5 123 Pine Ave. 181/815/08155
1 136695978 main st NaN
2 201/123/12340 1234 west main heights 57033 201/123/12340
3 4151081508156 apt 1 789 s maple rd manhattan 4151081508156
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_de_stnr(df, column = "stnr", output_format="standard")
[3]:
stnr address stnr_clean
0 181/815/0815 5 123 Pine Ave. 181/815/08155
1 136695978 main st NaN
2 201/123/12340 1234 west main heights 57033 201/123/12340
3 4151081508156 apt 1 789 s maple rd manhattan 4151081508156
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

compact

[4]:
clean_de_stnr(df, column = "stnr", output_format="compact")
[4]:
stnr address stnr_clean
0 181/815/0815 5 123 Pine Ave. 18181508155
1 136695978 main st NaN
2 201/123/12340 1234 west main heights 57033 20112312340
3 4151081508156 apt 1 789 s maple rd manhattan 4151081508156
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned STNR strings is added with a title in the format "{original title}_clean".

[5]:
clean_de_stnr(df, column="stnr", inplace=True)
[5]:
stnr_clean address
0 181/815/08155 123 Pine Ave.
1 NaN main st
2 201/123/12340 1234 west main heights 57033
3 4151081508156 apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN (staples center) 1111 S Figueroa St, Los Angeles
6 NaN hello

4. errors parameter

coerce (default)

[6]:
clean_de_stnr(df, "stnr", errors="coerce")
[6]:
stnr address stnr_clean
0 181/815/0815 5 123 Pine Ave. 181/815/08155
1 136695978 main st NaN
2 201/123/12340 1234 west main heights 57033 201/123/12340
3 4151081508156 apt 1 789 s maple rd manhattan 4151081508156
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

ignore

[7]:
clean_de_stnr(df, "stnr", errors="ignore")
[7]:
stnr address stnr_clean
0 181/815/0815 5 123 Pine Ave. 181/815/08155
1 136695978 main st 136695978
2 201/123/12340 1234 west main heights 57033 201/123/12340
3 4151081508156 apt 1 789 s maple rd manhattan 4151081508156
4 hello robie house, 789 north main street hello
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

4. validate_de_stnr()

validate_de_stnr() returns True when the input is a valid STNR. Otherwise it returns False.

The input of validate_de_stnr() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_de_stnr() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_de_stnr() returns the validation result for the whole DataFrame.

[8]:
from dataprep.clean import validate_de_stnr
print(validate_de_stnr("181/815/0815 5"))
print(validate_de_stnr("136695978"))
print(validate_de_stnr("201/123/12340"))
print(validate_de_stnr("4151081508156"))
print(validate_de_stnr("hello"))
print(validate_de_stnr(np.nan))
print(validate_de_stnr("NULL"))
True
False
True
True
False
False
False

Series

[9]:
validate_de_stnr(df["stnr"])
[9]:
0     True
1    False
2     True
3     True
4    False
5    False
6    False
Name: stnr, dtype: bool

DataFrame + Specify Column

[10]:
validate_de_stnr(df, column="stnr")
[10]:
0     True
1    False
2     True
3     True
4    False
5    False
6    False
Name: stnr, dtype: bool

Only DataFrame

[11]:
validate_de_stnr(df)
[11]:
stnr address
0 True False
1 False False
2 True False
3 True False
4 False False
5 False False
6 False False

region parameter

Specifically, region can be supplied to validate_de_stnr to verify that the number is assigned in that region.

[12]:
validate_de_stnr(df["stnr"], region='Sachsen')
[12]:
0    False
1    False
2     True
3    False
4    False
5    False
6    False
Name: stnr, dtype: bool
[13]:
validate_de_stnr(df["stnr"], region='Thuringen')
[13]:
0     True
1    False
2    False
3     True
4    False
5    False
6    False
Name: stnr, dtype: bool
[ ]: