German Tax Numbers¶
Introduction¶
The function clean_de_stnr()
cleans a column containing German tax numbers (STNR) strings, and standardizes them in a given format. The function validate_de_stnr()
validates either a single STNR strings, a column of STNR strings or a DataFrame of STNR strings, returning True
if the value is valid, and False
otherwise.
STNR strings can be converted to the following formats via the output_format
parameter:
compact
: only number strings without any seperators or whitespace, like “18181508155”standard
: STNR strings with proper whitespace in the proper places, like “181/815/0815 5”
Invalid parsing is handled with the errors
parameter:
coerce
(default): invalid parsing will be set to NaNignore
: invalid parsing will return the inputraise
: invalid parsing will raise an exception
The following sections demonstrate the functionality of clean_de_stnr()
and validate_de_stnr()
.
An example dataset containing STNR strings¶
[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
{
"stnr": [
' 181/815/0815 5',
"136695978",
"201/123/12340",
"4151081508156",
"hello",
np.nan,
"NULL"
],
"address": [
"123 Pine Ave.",
"main st",
"1234 west main heights 57033",
"apt 1 789 s maple rd manhattan",
"robie house, 789 north main street",
"(staples center) 1111 S Figueroa St, Los Angeles",
"hello",
]
}
)
df
[1]:
stnr | address | |
---|---|---|
0 | 181/815/0815 5 | 123 Pine Ave. |
1 | 136695978 | main st |
2 | 201/123/12340 | 1234 west main heights 57033 |
3 | 4151081508156 | apt 1 789 s maple rd manhattan |
4 | hello | robie house, 789 north main street |
5 | NaN | (staples center) 1111 S Figueroa St, Los Angeles |
6 | NULL | hello |
1. Default clean_de_stnr
¶
By default, clean_de_stnr
will clean stnr strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_de_stnr
clean_de_stnr(df, column = "stnr")
[2]:
stnr | address | stnr_clean | |
---|---|---|---|
0 | 181/815/0815 5 | 123 Pine Ave. | 181/815/08155 |
1 | 136695978 | main st | NaN |
2 | 201/123/12340 | 1234 west main heights 57033 | 201/123/12340 |
3 | 4151081508156 | apt 1 789 s maple rd manhattan | 4151081508156 |
4 | hello | robie house, 789 north main street | NaN |
5 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
6 | NULL | hello | NaN |
2. Output formats¶
This section demonstrates the output parameter.
standard
(default)¶
[3]:
clean_de_stnr(df, column = "stnr", output_format="standard")
[3]:
stnr | address | stnr_clean | |
---|---|---|---|
0 | 181/815/0815 5 | 123 Pine Ave. | 181/815/08155 |
1 | 136695978 | main st | NaN |
2 | 201/123/12340 | 1234 west main heights 57033 | 201/123/12340 |
3 | 4151081508156 | apt 1 789 s maple rd manhattan | 4151081508156 |
4 | hello | robie house, 789 north main street | NaN |
5 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
6 | NULL | hello | NaN |
compact
¶
[4]:
clean_de_stnr(df, column = "stnr", output_format="compact")
[4]:
stnr | address | stnr_clean | |
---|---|---|---|
0 | 181/815/0815 5 | 123 Pine Ave. | 18181508155 |
1 | 136695978 | main st | NaN |
2 | 201/123/12340 | 1234 west main heights 57033 | 20112312340 |
3 | 4151081508156 | apt 1 789 s maple rd manhattan | 4151081508156 |
4 | hello | robie house, 789 north main street | NaN |
5 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
6 | NULL | hello | NaN |
3. inplace
parameter¶
This deletes the given column from the returned DataFrame. A new column containing cleaned STNR strings is added with a title in the format "{original title}_clean"
.
[5]:
clean_de_stnr(df, column="stnr", inplace=True)
[5]:
stnr_clean | address | |
---|---|---|
0 | 181/815/08155 | 123 Pine Ave. |
1 | NaN | main st |
2 | 201/123/12340 | 1234 west main heights 57033 |
3 | 4151081508156 | apt 1 789 s maple rd manhattan |
4 | NaN | robie house, 789 north main street |
5 | NaN | (staples center) 1111 S Figueroa St, Los Angeles |
6 | NaN | hello |
4. errors
parameter¶
coerce
(default)¶
[6]:
clean_de_stnr(df, "stnr", errors="coerce")
[6]:
stnr | address | stnr_clean | |
---|---|---|---|
0 | 181/815/0815 5 | 123 Pine Ave. | 181/815/08155 |
1 | 136695978 | main st | NaN |
2 | 201/123/12340 | 1234 west main heights 57033 | 201/123/12340 |
3 | 4151081508156 | apt 1 789 s maple rd manhattan | 4151081508156 |
4 | hello | robie house, 789 north main street | NaN |
5 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
6 | NULL | hello | NaN |
ignore
¶
[7]:
clean_de_stnr(df, "stnr", errors="ignore")
[7]:
stnr | address | stnr_clean | |
---|---|---|---|
0 | 181/815/0815 5 | 123 Pine Ave. | 181/815/08155 |
1 | 136695978 | main st | 136695978 |
2 | 201/123/12340 | 1234 west main heights 57033 | 201/123/12340 |
3 | 4151081508156 | apt 1 789 s maple rd manhattan | 4151081508156 |
4 | hello | robie house, 789 north main street | hello |
5 | NaN | (staples center) 1111 S Figueroa St, Los Angeles | NaN |
6 | NULL | hello | NaN |
4. validate_de_stnr()
¶
validate_de_stnr()
returns True
when the input is a valid STNR. Otherwise it returns False
.
The input of validate_de_stnr()
can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_de_stnr()
only returns the validation result for the specified column. If user doesn’t specify the column name, validate_de_stnr()
returns the validation result for the whole DataFrame.
[8]:
from dataprep.clean import validate_de_stnr
print(validate_de_stnr("181/815/0815 5"))
print(validate_de_stnr("136695978"))
print(validate_de_stnr("201/123/12340"))
print(validate_de_stnr("4151081508156"))
print(validate_de_stnr("hello"))
print(validate_de_stnr(np.nan))
print(validate_de_stnr("NULL"))
True
False
True
True
False
False
False
Series¶
[9]:
validate_de_stnr(df["stnr"])
[9]:
0 True
1 False
2 True
3 True
4 False
5 False
6 False
Name: stnr, dtype: bool
DataFrame + Specify Column¶
[10]:
validate_de_stnr(df, column="stnr")
[10]:
0 True
1 False
2 True
3 True
4 False
5 False
6 False
Name: stnr, dtype: bool
Only DataFrame¶
[11]:
validate_de_stnr(df)
[11]:
stnr | address | |
---|---|---|
0 | True | False |
1 | False | False |
2 | True | False |
3 | True | False |
4 | False | False |
5 | False | False |
6 | False | False |
region
parameter¶
Specifically, region
can be supplied to validate_de_stnr
to verify that the number is assigned in that region.
[12]:
validate_de_stnr(df["stnr"], region='Sachsen')
[12]:
0 False
1 False
2 True
3 False
4 False
5 False
6 False
Name: stnr, dtype: bool
[13]:
validate_de_stnr(df["stnr"], region='Thuringen')
[13]:
0 True
1 False
2 False
3 True
4 False
5 False
6 False
Name: stnr, dtype: bool
[ ]: