The function clean_pe_cui() cleans a column containing Peruvian personal number (CUI) strings, and standardizes them in a given format. The function validate_pe_cui() validates either a single CUI strings, a column of CUI strings or a DataFrame of CUI strings, returning True if the value is valid, and False otherwise.
clean_pe_cui()
validate_pe_cui()
True
False
CUI strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “10117410”
compact
standard: CUI strings with proper whitespace in the proper places. Note that in the case of CUI, the compact format is the same as the standard one.
standard
ruc: convert the number to a valid RUC, like “10101174102”.
ruc
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_pe_cui() and validate_pe_cui().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "cui": [ "10117410", "10117410-3", '7542011030', '7552A10004', '8019010008', "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_pe_cui
By default, clean_pe_cui will clean cui strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_pe_cui clean_pe_cui(df, column = "cui")
This section demonstrates the output parameter.
[3]:
clean_pe_cui(df, column = "cui", output_format="standard")
[4]:
clean_pe_cui(df, column = "cui", output_format="compact")
[5]:
clean_pe_cui(df, column = "cui", output_format="ruc")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned CUI strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[6]:
clean_pe_cui(df, column="cui", inplace=True)
[7]:
clean_pe_cui(df, "cui", errors="coerce")
[8]:
clean_pe_cui(df, "cui", errors="ignore")
validate_pe_cui() returns True when the input is a valid CUI. Otherwise it returns False.
The input of validate_pe_cui() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_pe_cui() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_pe_cui() returns the validation result for the whole DataFrame.
[9]:
from dataprep.clean import validate_pe_cui print(validate_pe_cui('10117410')) print(validate_pe_cui('10117410-3')) print(validate_pe_cui('7542011030')) print(validate_pe_cui('7552A10004')) print(validate_pe_cui('8019010008')) print(validate_pe_cui("hello")) print(validate_pe_cui(np.nan)) print(validate_pe_cui("NULL"))
True False False False False False False False
[10]:
validate_pe_cui(df["cui"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: cui, dtype: bool
[11]:
validate_pe_cui(df, column="cui")
[12]:
validate_pe_cui(df)
[ ]: