The function clean_cn_ric() cleans a column containing Chinese Resident Identity Card Number (RIC) strings, and standardizes them in a given format. The function validate_cn_ric() validates either a single RIC strings, a column of RIC strings or a DataFrame of RIC strings, returning True if the value is valid, and False otherwise.
clean_cn_ric()
validate_cn_ric()
True
False
RIC strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “360426199101010071”
compact
standard: RIC strings with proper whitespace in the proper places. Note that in the case of RIC, the compact format is the same as the standard one
standard
birthdate: split the date parts from the number and return the birth date
birthdate
birthplace: use the number to look up the place of birth of the person
birthplace
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_cn_ric() and validate_cn_ric().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "ric": [ '360426199101010071', '230306196304054513', '230307196304054513', # invalid '110223790813697', # not a RIC "hello", np.nan, "NULL" ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_cn_ric
By default, clean_cn_ric will clean ric strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_cn_ric clean_cn_ric(df, column = "ric")
This section demonstrates the output parameter.
[3]:
clean_cn_ric(df, column = "ric", output_format="standard")
[4]:
clean_cn_ric(df, column = "ric", output_format="compact")
[5]:
clean_cn_ric(df, column = "ric", output_format="birthdate")
[6]:
clean_cn_ric(df, column = "ric", output_format="birthplace")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned RIC strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[7]:
clean_cn_ric(df, column="ric", inplace=True)
[8]:
clean_cn_ric(df, "ric", errors="coerce")
[9]:
clean_cn_ric(df, "ric", errors="ignore")
validate_cn_ric() returns True when the input is a valid RIC. Otherwise it returns False.
The input of validate_cn_ric() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_cn_ric() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_cn_ric() returns the validation result for the whole DataFrame.
[10]:
from dataprep.clean import validate_cn_ric print(validate_cn_ric("230306196304054513")) print(validate_cn_ric("1234567")) print(validate_cn_ric("360426199101010071")) print(validate_cn_ric("360436199101010071")) # change a bit and become invalid print(validate_cn_ric("hello")) print(validate_cn_ric(np.nan)) print(validate_cn_ric("NULL"))
True False True False False False False
[11]:
validate_cn_ric(df["ric"])
0 True 1 True 2 False 3 False 4 False 5 False 6 False Name: ric, dtype: bool
[12]:
validate_cn_ric(df, column="ric")
[13]:
validate_cn_ric(df)
[ ]: