Finnish Personal Identity Codes

Introduction

The function clean_fi_hetu() cleans a column containing Finnish personal identity code (HETU) strings, and standardizes them in a given format. The function validate_fi_hetu() validates either a single HETU strings, a column of HETU strings or a DataFrame of HETU strings, returning True if the value is valid, and False otherwise.

HETU strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “131052A308T”

  • standard: HETU strings with proper whitespace in the proper places. Note that in the case of HETU, the compact format is the same as the standard one.

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_fi_hetu() and validate_fi_hetu().

An example dataset containing HETU strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "hetu": [
            '131052a308t',
            '131052-308U',
            'BE 428759497',
            'BE431150351',
            "002 724 334",
            "hello",
            np.nan,
            "NULL",
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "1111 S Figueroa St, Los Angeles, CA 90015",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
hetu address
0 131052a308t 123 Pine Ave.
1 131052-308U main st
2 BE 428759497 1234 west main heights 57033
3 BE431150351 apt 1 789 s maple rd manhattan
4 002 724 334 robie house, 789 north main street
5 hello 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NULL hello

1. Default clean_fi_hetu

By default, clean_fi_hetu will clean hetu strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_fi_hetu
clean_fi_hetu(df, column = "hetu")
[2]:
hetu address hetu_clean
0 131052a308t 123 Pine Ave. 131052A308T
1 131052-308U main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_fi_hetu(df, column = "hetu", output_format="standard")
[3]:
hetu address hetu_clean
0 131052a308t 123 Pine Ave. 131052A308T
1 131052-308U main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

compact

[4]:
clean_fi_hetu(df, column = "hetu", output_format="compact")
[4]:
hetu address hetu_clean
0 131052a308t 123 Pine Ave. 131052A308T
1 131052-308U main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned HETU strings is added with a title in the format "{original title}_clean".

[5]:
clean_fi_hetu(df, column="hetu", inplace=True)
[5]:
hetu_clean address
0 131052A308T 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NaN hello

4. errors parameter

coerce (default)

[6]:
clean_fi_hetu(df, "hetu", errors="coerce")
[6]:
hetu address hetu_clean
0 131052a308t 123 Pine Ave. 131052A308T
1 131052-308U main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

ignore

[7]:
clean_fi_hetu(df, "hetu", errors="ignore")
[7]:
hetu address hetu_clean
0 131052a308t 123 Pine Ave. 131052A308T
1 131052-308U main st 131052-308U
2 BE 428759497 1234 west main heights 57033 BE 428759497
3 BE431150351 apt 1 789 s maple rd manhattan BE431150351
4 002 724 334 robie house, 789 north main street 002 724 334
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 hello
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

4. validate_fi_hetu()

validate_fi_hetu() returns True when the input is a valid HETU. Otherwise it returns False.

The input of validate_fi_hetu() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_fi_hetu() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_fi_hetu() returns the validation result for the whole DataFrame.

[8]:
from dataprep.clean import validate_fi_hetu
print(validate_fi_hetu("131052a308t"))
print(validate_fi_hetu("131052-308U"))
print(validate_fi_hetu('BE 428759497'))
print(validate_fi_hetu('BE431150351'))
print(validate_fi_hetu("004085616"))
print(validate_fi_hetu("hello"))
print(validate_fi_hetu(np.nan))
print(validate_fi_hetu("NULL"))
True
False
False
False
False
False
False
False

Series

[9]:
validate_fi_hetu(df["hetu"])
[9]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: hetu, dtype: bool

DataFrame + Specify Column

[10]:
validate_fi_hetu(df, column="hetu")
[10]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: hetu, dtype: bool

Only DataFrame

[11]:
validate_fi_hetu(df)
[11]:
hetu address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
7 False False
[ ]: