Danish Citizen Numbers

Introduction

The function clean_dk_cpr() cleans a column containing Danish citizen number (CPR) strings, and standardizes them in a given format. The function validate_dk_cpr() validates either a single CPR strings, a column of CPR strings or a DataFrame of CPR strings, returning True if the value is valid, and False otherwise.

CPR strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “211062-5629”

  • standard: CPR strings with proper whitespace in the proper places, like “2110625629”

  • birthdate: split the number and return the birth date, like “1862-10-21”.

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_dk_cpr() and validate_dk_cpr().

An example dataset containing CPR strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "cpr": [
            "2110625629",
            "511062-5629",
            "999 999 999",
            "004085616",
            "002 724 334",
            "hello",
            np.nan,
            "NULL",
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "1111 S Figueroa St, Los Angeles, CA 90015",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
cpr address
0 2110625629 123 Pine Ave.
1 511062-5629 main st
2 999 999 999 1234 west main heights 57033
3 004085616 apt 1 789 s maple rd manhattan
4 002 724 334 robie house, 789 north main street
5 hello 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NULL hello

1. Default clean_dk_cpr

By default, clean_dk_cpr will clean cpr strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_dk_cpr
clean_dk_cpr(df, column = "cpr")
[2]:
cpr address cpr_clean
0 2110625629 123 Pine Ave. 211062-5629
1 511062-5629 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_dk_cpr(df, column = "cpr", output_format="standard")
[3]:
cpr address cpr_clean
0 2110625629 123 Pine Ave. 211062-5629
1 511062-5629 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

compact

[4]:
clean_dk_cpr(df, column = "cpr", output_format="compact")
[4]:
cpr address cpr_clean
0 2110625629 123 Pine Ave. 2110625629
1 511062-5629 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

birthdate

[5]:
clean_dk_cpr(df, column = "cpr", output_format="birthdate")
[5]:
cpr address cpr_clean
0 2110625629 123 Pine Ave. 1862-10-21
1 511062-5629 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned CPR strings is added with a title in the format "{original title}_clean".

[6]:
clean_dk_cpr(df, column="cpr", inplace=True)
[6]:
cpr_clean address
0 211062-5629 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NaN hello

4. errors parameter

coerce (default)

[7]:
clean_dk_cpr(df, "cpr", errors="coerce")
[7]:
cpr address cpr_clean
0 2110625629 123 Pine Ave. 211062-5629
1 511062-5629 main st NaN
2 999 999 999 1234 west main heights 57033 NaN
3 004085616 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

ignore

[8]:
clean_dk_cpr(df, "cpr", errors="ignore")
[8]:
cpr address cpr_clean
0 2110625629 123 Pine Ave. 211062-5629
1 511062-5629 main st 511062-5629
2 999 999 999 1234 west main heights 57033 999 999 999
3 004085616 apt 1 789 s maple rd manhattan 004085616
4 002 724 334 robie house, 789 north main street 002 724 334
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 hello
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

4. validate_dk_cpr()

validate_dk_cpr() returns True when the input is a valid CPR. Otherwise it returns False.

The input of validate_dk_cpr() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_dk_cpr() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_dk_cpr() returns the validation result for the whole DataFrame.

[9]:
from dataprep.clean import validate_dk_cpr
print(validate_dk_cpr("2110625629"))
print(validate_dk_cpr("511062-5629"))
print(validate_dk_cpr("999 999 999"))
print(validate_dk_cpr("51824753556"))
print(validate_dk_cpr("004085616"))
print(validate_dk_cpr("hello"))
print(validate_dk_cpr(np.nan))
print(validate_dk_cpr("NULL"))
True
False
False
False
False
False
False
False

Series

[10]:
validate_dk_cpr(df["cpr"])
[10]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: cpr, dtype: bool

DataFrame + Specify Column

[11]:
validate_dk_cpr(df, column="cpr")
[11]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: cpr, dtype: bool

Only DataFrame

[12]:
validate_dk_cpr(df)
[12]:
cpr address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
7 False False
[ ]: