Japanese Corporate Numbers

Introduction

The function clean_jp_cn() cleans a column containing Japanese Corporate Number (CN) strings, and standardizes them in a given format. The function validate_jp_cn() validates either a single CN strings, a column of CN strings or a DataFrame of CN strings, returning True if the value is valid, and False otherwise.

CN strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “5835678256246”

  • standard: CN strings with proper whitespace in the proper places, like “5-8356-7825-6246”

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_jp_cn() and validate_jp_cn().

An example dataset containing CN strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "cn": [
            "5835678256246",
            "2-8356-7825-6246",
            "51824753556",
            "51 824 753 556",
            "hello",
            np.nan,
            "NULL"
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
cn address
0 5835678256246 123 Pine Ave.
1 2-8356-7825-6246 main st
2 51824753556 1234 west main heights 57033
3 51 824 753 556 apt 1 789 s maple rd manhattan
4 hello robie house, 789 north main street
5 NaN (staples center) 1111 S Figueroa St, Los Angeles
6 NULL hello

1. Default clean_jp_cn

By default, clean_jp_cn will clean cn strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_jp_cn
clean_jp_cn(df, column = "cn")
[2]:
cn address cn_clean
0 5835678256246 123 Pine Ave. 5-8356-7825-6246
1 2-8356-7825-6246 main st NaN
2 51824753556 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_jp_cn(df, column = "cn", output_format="standard")
[3]:
cn address cn_clean
0 5835678256246 123 Pine Ave. 5-8356-7825-6246
1 2-8356-7825-6246 main st NaN
2 51824753556 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

compact

[4]:
clean_jp_cn(df, column = "cn", output_format="compact")
[4]:
cn address cn_clean
0 5835678256246 123 Pine Ave. 5835678256246
1 2-8356-7825-6246 main st NaN
2 51824753556 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned CN strings is added with a title in the format "{original title}_clean".

[5]:
clean_jp_cn(df, column="cn", inplace=True)
[5]:
cn_clean address
0 5-8356-7825-6246 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN (staples center) 1111 S Figueroa St, Los Angeles
6 NaN hello

4. errors parameter

coerce (default)

[6]:
clean_jp_cn(df, "cn", errors="coerce")
[6]:
cn address cn_clean
0 5835678256246 123 Pine Ave. 5-8356-7825-6246
1 2-8356-7825-6246 main st NaN
2 51824753556 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

ignore

[7]:
clean_jp_cn(df, "cn", errors="ignore")
[7]:
cn address cn_clean
0 5835678256246 123 Pine Ave. 5-8356-7825-6246
1 2-8356-7825-6246 main st 2-8356-7825-6246
2 51824753556 1234 west main heights 57033 51824753556
3 51 824 753 556 apt 1 789 s maple rd manhattan 51 824 753 556
4 hello robie house, 789 north main street hello
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

4. validate_jp_cn()

validate_jp_cn() returns True when the input is a valid CN. Otherwise it returns False.

The input of validate_jp_cn() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_jp_cn() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_jp_cn() returns the validation result for the whole DataFrame.

[8]:
from dataprep.clean import validate_jp_cn
print(validate_jp_cn("5835678256246"))
print(validate_jp_cn("2-8356-7825-6246"))
print(validate_jp_cn("51824753556"))
print(validate_jp_cn("51 824 753 556"))
print(validate_jp_cn("hello"))
print(validate_jp_cn(np.nan))
print(validate_jp_cn("NULL"))
True
False
False
False
False
False
False

Series

[9]:
validate_jp_cn(df["cn"])
[9]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
Name: cn, dtype: bool

DataFrame + Specify Column

[10]:
validate_jp_cn(df, column="cn")
[10]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
Name: cn, dtype: bool

Only DataFrame

[11]:
validate_jp_cn(df)
[11]:
cn address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
[ ]: