Swiss Business Identifiers

Introduction

The function clean_ch_uid() cleans a column containing Swiss business identifier (UID) strings, and standardizes them in a given format. The function validate_ch_uid() validates either a single UID strings, a column of UID strings or a DataFrame of UID strings, returning True if the value is valid, and False otherwise.

UID strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “CHE100155212”

  • standard: UID strings with proper whitespace in the proper places, like “CHE-100.155.212”

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_ch_uid() and validate_ch_uid().

An example dataset containing UID strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "uid": [
            "CHE100155212",
            "CHE-100.155.213",
            "51824753556",
            "51 824 753 556",
            "hello",
            np.nan,
            "NULL"
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
uid address
0 CHE100155212 123 Pine Ave.
1 CHE-100.155.213 main st
2 51824753556 1234 west main heights 57033
3 51 824 753 556 apt 1 789 s maple rd manhattan
4 hello robie house, 789 north main street
5 NaN (staples center) 1111 S Figueroa St, Los Angeles
6 NULL hello

1. Default clean_ch_uid

By default, clean_ch_uid will clean uid strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_ch_uid
clean_ch_uid(df, column = "uid")
[2]:
uid address uid_clean
0 CHE100155212 123 Pine Ave. CHE-100.155.212
1 CHE-100.155.213 main st NaN
2 51824753556 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_ch_uid(df, column = "uid", output_format="standard")
[3]:
uid address uid_clean
0 CHE100155212 123 Pine Ave. CHE-100.155.212
1 CHE-100.155.213 main st NaN
2 51824753556 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

compact

[4]:
clean_ch_uid(df, column = "uid", output_format="compact")
[4]:
uid address uid_clean
0 CHE100155212 123 Pine Ave. CHE100155212
1 CHE-100.155.213 main st NaN
2 51824753556 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned UID strings is added with a title in the format "{original title}_clean".

[5]:
clean_ch_uid(df, column="uid", inplace=True)
[5]:
uid_clean address
0 CHE-100.155.212 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN (staples center) 1111 S Figueroa St, Los Angeles
6 NaN hello

4. errors parameter

coerce (default)

[6]:
clean_ch_uid(df, "uid", errors="coerce")
[6]:
uid address uid_clean
0 CHE100155212 123 Pine Ave. CHE-100.155.212
1 CHE-100.155.213 main st NaN
2 51824753556 1234 west main heights 57033 NaN
3 51 824 753 556 apt 1 789 s maple rd manhattan NaN
4 hello robie house, 789 north main street NaN
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

ignore

[7]:
clean_ch_uid(df, "uid", errors="ignore")
[7]:
uid address uid_clean
0 CHE100155212 123 Pine Ave. CHE-100.155.212
1 CHE-100.155.213 main st CHE-100.155.213
2 51824753556 1234 west main heights 57033 51824753556
3 51 824 753 556 apt 1 789 s maple rd manhattan 51 824 753 556
4 hello robie house, 789 north main street hello
5 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
6 NULL hello NaN

4. validate_ch_uid()

validate_ch_uid() returns True when the input is a valid UID. Otherwise it returns False.

The input of validate_ch_uid() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_ch_uid() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_ch_uid() returns the validation result for the whole DataFrame.

[8]:
from dataprep.clean import validate_ch_uid
print(validate_ch_uid("CHE100155212"))
print(validate_ch_uid("CHE-100.155.213"))
print(validate_ch_uid("51824753556"))
print(validate_ch_uid("51 824 753 556"))
print(validate_ch_uid("hello"))
print(validate_ch_uid(np.nan))
print(validate_ch_uid("NULL"))
True
False
False
False
False
False
False

Series

[9]:
validate_ch_uid(df["uid"])
[9]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
Name: uid, dtype: bool

DataFrame + Specify Column

[10]:
validate_ch_uid(df, column="uid")
[10]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
Name: uid, dtype: bool

Only DataFrame

[11]:
validate_ch_uid(df)
[11]:
uid address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
[ ]: