The function clean_es_cif() cleans a column containing Spanish fiscal numbers (CIF) strings, and standardizes them in a given format. The function validate_es_cif() validates either a single CIF strings, a column of CIF strings or a DataFrame of CIF strings, returning True if the value is valid, and False otherwise.
clean_es_cif()
validate_es_cif()
True
False
CIF strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “A13585625”
compact
standard: CIF strings with proper whitespace in the proper places. Note that in the case of CIF, the compact format is the same as the standard one.
standard
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_es_cif() and validate_es_cif().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "cif": [ 'A13 585 625', 'M-1234567-L', 'BE 428759497', 'BE431150351', "002 724 334", "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_es_cif
By default, clean_es_cif will clean cif strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_es_cif clean_es_cif(df, column = "cif")
This section demonstrates the output parameter.
[3]:
clean_es_cif(df, column = "cif", output_format="standard")
[4]:
clean_es_cif(df, column = "cif", output_format="compact")
split
The split parameter adds individual columns containing the cleaned 9-digits CIF values to the given DataFrame.
[5]:
clean_es_cif(df, column="cif", split=True)
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned CIF strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[6]:
clean_es_cif(df, column="cif", inplace=True)
[7]:
clean_es_cif(df, "cif", errors="coerce")
[8]:
clean_es_cif(df, "cif", errors="ignore")
validate_es_cif() returns True when the input is a valid CIF. Otherwise it returns False.
The input of validate_es_cif() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_es_cif() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_es_cif() returns the validation result for the whole DataFrame.
[9]:
from dataprep.clean import validate_es_cif print(validate_es_cif("A13 585 625")) print(validate_es_cif("M-1234567-L")) print(validate_es_cif('BE 428759497')) print(validate_es_cif('BE431150351')) print(validate_es_cif("004085616")) print(validate_es_cif("hello")) print(validate_es_cif(np.nan)) print(validate_es_cif("NULL"))
True False False False False False False False
[10]:
validate_es_cif(df["cif"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: cif, dtype: bool
[11]:
validate_es_cif(df, column="cif")
[12]:
validate_es_cif(df)
[ ]: