Irish Personal Numbers

Introduction

The function clean_ie_pps() cleans a column containing Irish personal number (PPS) strings, and standardizes them in a given format. The function validate_ie_pps() validates either a single PPS strings, a column of PPS strings or a DataFrame of PPS strings, returning True if the value is valid, and False otherwise.

PPS strings can be converted to the following formats via the output_format parameter:

  • compact: only number strings without any seperators or whitespace, like “6433435OA”

  • standard: PPS strings with proper whitespace in the proper places. Note that in the case of PPS, the compact format is the same as the standard one.

Invalid parsing is handled with the errors parameter:

  • coerce (default): invalid parsing will be set to NaN

  • ignore: invalid parsing will return the input

  • raise: invalid parsing will raise an exception

The following sections demonstrate the functionality of clean_ie_pps() and validate_ie_pps().

An example dataset containing PPS strings

[1]:
import pandas as pd
import numpy as np
df = pd.DataFrame(
    {
        "pps": [
            '6433435OA',
            '6433435VH',
            'BE 428759497',
            'BE431150351',
            "002 724 334",
            "hello",
            np.nan,
            "NULL",
        ],
        "address": [
            "123 Pine Ave.",
            "main st",
            "1234 west main heights 57033",
            "apt 1 789 s maple rd manhattan",
            "robie house, 789 north main street",
            "1111 S Figueroa St, Los Angeles, CA 90015",
            "(staples center) 1111 S Figueroa St, Los Angeles",
            "hello",
        ]
    }
)
df
[1]:
pps address
0 6433435OA 123 Pine Ave.
1 6433435VH main st
2 BE 428759497 1234 west main heights 57033
3 BE431150351 apt 1 789 s maple rd manhattan
4 002 724 334 robie house, 789 north main street
5 hello 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NULL hello

1. Default clean_ie_pps

By default, clean_ie_pps will clean pps strings and output them in the standard format with proper separators.

[2]:
from dataprep.clean import clean_ie_pps
clean_ie_pps(df, column = "pps")
[2]:
pps address pps_clean
0 6433435OA 123 Pine Ave. 6433435OA
1 6433435VH main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

2. Output formats

This section demonstrates the output parameter.

standard (default)

[3]:
clean_ie_pps(df, column = "pps", output_format="standard")
[3]:
pps address pps_clean
0 6433435OA 123 Pine Ave. 6433435OA
1 6433435VH main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

compact

[4]:
clean_ie_pps(df, column = "pps", output_format="compact")
[4]:
pps address pps_clean
0 6433435OA 123 Pine Ave. 6433435OA
1 6433435VH main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

3. inplace parameter

This deletes the given column from the returned DataFrame. A new column containing cleaned PPS strings is added with a title in the format "{original title}_clean".

[5]:
clean_ie_pps(df, column="pps", inplace=True)
[5]:
pps_clean address
0 6433435OA 123 Pine Ave.
1 NaN main st
2 NaN 1234 west main heights 57033
3 NaN apt 1 789 s maple rd manhattan
4 NaN robie house, 789 north main street
5 NaN 1111 S Figueroa St, Los Angeles, CA 90015
6 NaN (staples center) 1111 S Figueroa St, Los Angeles
7 NaN hello

4. errors parameter

coerce (default)

[6]:
clean_ie_pps(df, "pps", errors="coerce")
[6]:
pps address pps_clean
0 6433435OA 123 Pine Ave. 6433435OA
1 6433435VH main st NaN
2 BE 428759497 1234 west main heights 57033 NaN
3 BE431150351 apt 1 789 s maple rd manhattan NaN
4 002 724 334 robie house, 789 north main street NaN
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 NaN
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

ignore

[7]:
clean_ie_pps(df, "pps", errors="ignore")
[7]:
pps address pps_clean
0 6433435OA 123 Pine Ave. 6433435OA
1 6433435VH main st 6433435VH
2 BE 428759497 1234 west main heights 57033 BE 428759497
3 BE431150351 apt 1 789 s maple rd manhattan BE431150351
4 002 724 334 robie house, 789 north main street 002 724 334
5 hello 1111 S Figueroa St, Los Angeles, CA 90015 hello
6 NaN (staples center) 1111 S Figueroa St, Los Angeles NaN
7 NULL hello NaN

4. validate_ie_pps()

validate_ie_pps() returns True when the input is a valid PPS. Otherwise it returns False.

The input of validate_ie_pps() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.

When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.

When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_ie_pps() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_ie_pps() returns the validation result for the whole DataFrame.

[8]:
from dataprep.clean import validate_ie_pps
print(validate_ie_pps("6433435OA"))
print(validate_ie_pps("6433435VH"))
print(validate_ie_pps('BE 428759497'))
print(validate_ie_pps('BE431150351'))
print(validate_ie_pps("004085616"))
print(validate_ie_pps("hello"))
print(validate_ie_pps(np.nan))
print(validate_ie_pps("NULL"))
True
False
False
False
False
False
False
False

Series

[9]:
validate_ie_pps(df["pps"])
[9]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: pps, dtype: bool

DataFrame + Specify Column

[10]:
validate_ie_pps(df, column="pps")
[10]:
0     True
1    False
2    False
3    False
4    False
5    False
6    False
7    False
Name: pps, dtype: bool

Only DataFrame

[11]:
validate_ie_pps(df)
[11]:
pps address
0 True False
1 False False
2 False False
3 False False
4 False False
5 False False
6 False False
7 False False
[ ]: