The function clean_gb_sedol() cleans a column containing Stock Exchange Daily Official List number (SEDOL) strings, and standardizes them in a given format. The function validate_gb_sedol() validates either a single SEDOL strings, a column of SEDOL strings or a DataFrame of SEDOL strings, returning True if the value is valid, and False otherwise.
clean_gb_sedol()
validate_gb_sedol()
True
False
SEDOL strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “B15KXQ8”
compact
standard: SEDOL strings with proper whitespace in the proper places. Note that in the case of SEDOL, the compact format is the same as the standard one.
standard
isin: convert the number to an ISIN, like “GB00B15KXQ89”.
isin
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_gb_sedol() and validate_gb_sedol().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "sedol": [ 'B15KXQ8', 'B15KXQ7', '7542011030', '7552A10004', '8019010008', "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_gb_sedol
By default, clean_gb_sedol will clean sedol strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_gb_sedol clean_gb_sedol(df, column = "sedol")
This section demonstrates the output parameter.
[3]:
clean_gb_sedol(df, column = "sedol", output_format="standard")
[4]:
clean_gb_sedol(df, column = "sedol", output_format="compact")
[5]:
clean_gb_sedol(df, column = "sedol", output_format="isin")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned SEDOL strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[6]:
clean_gb_sedol(df, column="sedol", inplace=True)
[7]:
clean_gb_sedol(df, "sedol", errors="coerce")
[8]:
clean_gb_sedol(df, "sedol", errors="ignore")
validate_gb_sedol() returns True when the input is a valid SEDOL. Otherwise it returns False.
The input of validate_gb_sedol() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_gb_sedol() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_gb_sedol() returns the validation result for the whole DataFrame.
[9]:
from dataprep.clean import validate_gb_sedol print(validate_gb_sedol('B15KXQ8')) print(validate_gb_sedol('B15KXQ7')) print(validate_gb_sedol('7542011030')) print(validate_gb_sedol('7552A10004')) print(validate_gb_sedol('8019010008')) print(validate_gb_sedol("hello")) print(validate_gb_sedol(np.nan)) print(validate_gb_sedol("NULL"))
True False False False False False False False
[10]:
validate_gb_sedol(df["sedol"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: sedol, dtype: bool
[11]:
validate_gb_sedol(df, column="sedol")
[12]:
validate_gb_sedol(df)
[ ]: