The function clean_es_ccc() cleans a column containing Spanish Bank Account Code (CCC) strings, and standardizes them in a given format. The function validate_es_ccc() validates either a single CCC strings, a column of CCC strings or a DataFrame of CCC strings, returning True if the value is valid, and False otherwise.
clean_es_ccc()
validate_es_ccc()
True
False
CCC strings can be converted to the following formats via the output_format parameter:
output_format
compact: only number strings without any seperators or whitespace, like “12341234161234567890”
compact
standard: CCC strings with proper whitespace in the proper places, like “1234 1234 16 12345 67890”
standard
iban: convert the number to an IBAN in compact format, like “ES7712341234161234567890”.
iban
Invalid parsing is handled with the errors parameter:
errors
coerce (default): invalid parsing will be set to NaN
coerce
ignore: invalid parsing will return the input
ignore
raise: invalid parsing will raise an exception
raise
The following sections demonstrate the functionality of clean_es_ccc() and validate_es_ccc().
[1]:
import pandas as pd import numpy as np df = pd.DataFrame( { "ccc": [ "12341234161234567890", "134-1234-16 1234567890", "999 999 999", "004085616", "002 724 334", "hello", np.nan, "NULL", ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "1111 S Figueroa St, Los Angeles, CA 90015", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df
clean_es_ccc
By default, clean_es_ccc will clean ccc strings and output them in the standard format with proper separators.
[2]:
from dataprep.clean import clean_es_ccc clean_es_ccc(df, column = "ccc")
This section demonstrates the output parameter.
[3]:
clean_es_ccc(df, column = "ccc", output_format="standard")
[4]:
clean_es_ccc(df, column = "ccc", output_format="compact")
[5]:
clean_es_ccc(df, column = "ccc", output_format="iban")
inplace
This deletes the given column from the returned DataFrame. A new column containing cleaned CCC strings is added with a title in the format "{original title}_clean".
"{original title}_clean"
[6]:
clean_es_ccc(df, column="ccc", inplace=True)
[7]:
clean_es_ccc(df, "ccc", errors="coerce")
[8]:
clean_es_ccc(df, "ccc", errors="ignore")
validate_es_ccc() returns True when the input is a valid CCC. Otherwise it returns False.
The input of validate_es_ccc() can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.
When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn’t need to specify a column name to be validated.
When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, validate_es_ccc() only returns the validation result for the specified column. If user doesn’t specify the column name, validate_es_ccc() returns the validation result for the whole DataFrame.
[9]:
from dataprep.clean import validate_es_ccc print(validate_es_ccc("12341234161234567890")) print(validate_es_ccc("134-1234-16 1234567890")) print(validate_es_ccc("999 999 999")) print(validate_es_ccc("51824753556")) print(validate_es_ccc("004085616")) print(validate_es_ccc("hello")) print(validate_es_ccc(np.nan)) print(validate_es_ccc("NULL"))
True False False False False False False False
[10]:
validate_es_ccc(df["ccc"])
0 True 1 False 2 False 3 False 4 False 5 False 6 False 7 False Name: ccc, dtype: bool
[11]:
validate_es_ccc(df, column="ccc")
[12]:
validate_es_ccc(df)
[ ]: